Skip to main content
Log in

Assessment of the Concentrations of Isoflavonoids in Red Clover (Trifolium pratense L.) of the Fabaceae Family Using Extraction by Different Methods

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

We performed a chromatographic evaluation of the recoveries of native forms of the main isoflavonoids from different morphological parts of red clover (Trifolium pratense L.) into water−alcoholic extracts using various extraction methods. Water−alcoholic extracts from red clover, obtained by maceration, microwave, ultrasonic, subcritical, and pharmacopoeial methods, were analyzed. Formononetin (0.260 mg/g) and genistein (0.051 mg/g) were maximally extracted from inflorescences of red clover by maceration; bioch-anin A was extracted by subcritical extraction (0.340 mg/g), and daidzein was extracted by ultrasonic method (0.034 mg/g). The conditions for the HPLC determination of daidzein, genistein, formononetin, and biochanin A in water−alcoholic extracts from red clover were optimized. The concentrations of isoflavonoids in various morphological parts of red clover were determined. The maximum total amount of isoflavonoids (0.190 mg/g) was observed in the water–ethanol extract from inflorescences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Meghwal, M. and Sahu, C.K., J. Cell Sci. Ther., 2015, vol. 6, no. 1, 1000194.

    Google Scholar 

  2. Berkegeim, M.L., Probl. Reprodukt., 2000, no. 3, p. 12.

  3. Karpuk, V.V., Farmakognoziya (Pharmacognosy), Minsk: Beloruss. Gos. Univ., 2011.

    Google Scholar 

  4. Murav’eva, D.A., Samylina, I.A., Yakovlev, G.P., Farmakognoziya (Pharmacognosy), Moscow: Meditsina, 2007.

    Google Scholar 

  5. Drenin, A.A. and Botirov, E.Kh., Khim. Rastit. Syr’ya, 2017, no. 3, p. 39.

  6. Krenn, L., Unterrieder, I., and Ruprechter, R., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2002, no. 777, p. 123.

  7. Tsao, R., Papadopoulos, Y., Yang, R., Young, J.C., and McRae, K., J. Agric. Food Chem., 2006, no. 54, p. 5797.

  8. Lemeziene, N., Padarauskas, A., Butkute, B., and Ceseviciene, J., Zemdirbyste-Agric., 2015, vol. 4, no. 102, p. 443.

    Google Scholar 

  9. Ercetin, T., Toker, G., Kartal, M., and Colgecen, H., Rev. Bras. Farmacogn., 2012, vol. 5, no. 22, p. 964.

    Article  Google Scholar 

  10. Visnevschi-Necrasov, T., Faria, M., Cunha, S., Harris, J., Meimberg, H., Curto, M., Pereira, M., Oliveira, M., and Nunes, E., Plant Syst. Evol., 2013, no. 299, p. 357.

  11. Reis, A., Scopel, M., and Zuanazzi, J., Rev. Bras. Farmacogn., 2018, no. 28, p. 542.

  12. Lemeziene, N., Padarauskas, A., Butkute, B., Ceseviciene, J., Taujenis, L., Norkeviciene, E., and Mikaliuniene, J., Zemdirbyste-Agric., 2015, vol. 102, no. 4, p. 443.

    Article  Google Scholar 

  13. Carlsen, S., Pedersen, H., Spliid, N., and Fomsgaard, I., Appl. Environ. Soil Sci., 2011, vol. 2012, 743413.

    Google Scholar 

  14. Dabkeviciene, G., Butkute, B., Lemeziene, N., Jakstas, V., Vilcinskas, E., and Janulis, V., Chemija, 2012, vol. 23, no. 4, p. 306.

    CAS  Google Scholar 

  15. Colgecen, H., Koca Caliskan, U., Kartal, M., Buyukkartal, H., Turk. J. Biol., 2014, no. 38, p. 619.

  16. Tsao, R., Papadopoulos, Y., Yang, R., Young, J.C., and McRae, K., J. Agric. Food Chem., 2006, no. 54, p. 5797.

  17. Zgórka, G., J. Sep. Sci., 2009, no. 32, p. 965.

  18. Booth, N., Overk, C., Yao, P., Totura, S., Deng, Y., Hedayat, A., Bolton, J., Pauli, G., and Farnsworth, N., J. Agric. Food Chem., 2006, no. 54, p. 1277.

  19. Krenn, L., Unterrieder, I., and Ruprechter, R., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2002, no. 777, p. 123.

  20. Renda, G., Yalcın, F., Nemutlu, E., Akkol, E., Suntar, I., Keles, H., Ina, H., Calıs, I., and Ersoz, T., J. Ethnopharmacol., 2013, no. 148, p. 423.

  21. Wu, Q., Wang, M., and Simon, J.E., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2004, no. 812, p. 325.

  22. Kowalska, I., Jedrejek, D., Ciesla, L., Pecio, L., Masullo, M., Piacente, S., Oleszek, W., and Stochmal, A., J. Agric. Food Chem., 2013, no. 61, p. 4417.

  23. Huie, C.W., Anal. Bioanal. Chem., 2002, no. 373, p. 23.

  24. Benedetti, B., Carro, M.Di., Mirasole, C., and Magi, E., Microchem. J., 2018, vol. 137, pp. 62–70.

    Article  CAS  Google Scholar 

  25. Khoddami, A., Wilkes, M.A., and Roberts, T.H., Molecules, 2013, no. 18, p. 2328.

  26. Jeong, S., Chang, M., Choi, S., Oh, S., Wu, H., Zhu, Y., Gao, X., Wang, X., Zhang, B., Lim, D., Lee, J., Kim, S., and Song, Y., Arch. Pharm. Res., 2018, vol. 41, no. 5, p. 57.

    Article  Google Scholar 

  27. Spagnuolo, P., Rasini, E., Luini, E., Legnaro, M., Luzzani, M., Casareto, E., Carreri, M., Paracchini, S., Marino, F., and Cosentino, M., Fitoterapia, 2014, no. 94, p. 62.

  28. Zarena, A.S. and Sankar, K.U., J. Food Biochem., 2012, no. 36, p. 627.

  29. Yingngam, B., Brantner, A., Jinarat, D., Kaewamatawong, R., Rungseevijitprapa, W., Suksamrarn, A., Piyachaturawat, P., and Chokchaisiri, R., Chem. Pharm. Bull., 2018, no. 66, p. 65.

  30. Gosudarstvennaya Farmakopeya Rossiiskoi Federatsii (State Pharmacopoeia of the Russian Federation), Moscow, 2018, 14th ed., vol. 4, p. 6020.

  31. Vinatoru, M., Ultrason. Sonochem., 2001, no. 8, p. 303.

  32. Biesaga, M., J. Chromatogr. A, 2011, no. 1218, p. 2505.

  33. Michel, T., Halabalaki, M., and Skaltsounis, A., Planta Med., 2013, no. 79, p. 514.

  34. Ekezie, F., Sun, D., and Cheng, J., Trends Food Sci. Technol., 2017, no. 67, p. 160.

  35. Lauberte, L., Arshanitsa, A., and Dizhbite, T., J. Anal. Appl. Pyrolysis, 2018, no. 134, p. 1.

  36. Kronholm, J., Hartonen, K., and Riekkola, M., TrAC, Trends Anal. Chem., 2007, vol. 26, no. 5, p. 396.

    Article  CAS  Google Scholar 

  37. Asbahani, A., Miladi, K., Badri, W., Sala, M., Addi, A., and Casabianca, H., Int. J. Pharm., 2015, no. 483, p. 220.

  38. Milevskaya, V.V., Temerdashev, Z.A., Kiseleva, N.V., Butyl’skaya, T.S., Shil’ko, E.A., and Statkus, M.A., J. Anal. Chem., 2016, vol. 71, no. 7, p. 741.

    Article  CAS  Google Scholar 

  39. Presentation of chemical analysis results (IUPAC recommendations 1994), Zh. Anal. Khim., 1998, vol. 53, no. 9, p. 999.

  40. High Performance Liquid Chromatography: Fundamental Principles and Practice, Lough, W.J. and Wainer, I.W., Eds., New York: Blackie, 1994.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The work is performed using scientific equipment from the Center for Collective Use “Ecological Analytical Center” of the Kuban State University.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. FZEN-2020-0022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. A. Temerdashev.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temerdashev, Z.A., Chubukina, T.K., Vinitskaya, E.A. et al. Assessment of the Concentrations of Isoflavonoids in Red Clover (Trifolium pratense L.) of the Fabaceae Family Using Extraction by Different Methods. J Anal Chem 76, 1071–1082 (2021). https://doi.org/10.1134/S1061934821090112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934821090112

Keywords:

Navigation