Skip to main content

Advertisement

Log in

Thermal Comfort Model for HVAC Buildings Using Machine Learning

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Thermal comfort is a condition of mind that expresses satisfaction with the thermal environment. Thermal comfort is critical for both health and productivity. Inadequate thermal comfort results in stress for building inhabitants. Improved thermal conditions are directly related to improved health and productivity of individuals. This paper proposes a novel human thermal comfort model using machine learning algorithms that identify the key features and predict thermal sensation with higher accuracy. We evaluate our approach using tenfold cross-validation and compare our results with state-of-the-art Fanger’s model. Our approach achieves a higher accuracy of 86.08%. Our results demonstrate the potential of our approach to predict thermal sensation votes under wide-ranging thermal conditions correctly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kuchen, E.; Fisch, M.N.: Spot monitoring: thermal comfort evaluation in 25 office buildings in winter. Build. Environ. 44(4), 839–847 (2009)

    Article  Google Scholar 

  2. Degroot, D.W.K.W.: Impaired defense of core temperature in aged humans during mild cold stress. Integr. Comp. Physiol. 292(1), R103–R108 (2007)

    Article  Google Scholar 

  3. Semenza, J.C.; Rubin, C.H.; Falter, K.H.; Selanikio, J.D.; Flanders, W.D.; Howe, H.L.; Wilhelm, J.L.: Heat-related deaths during the July 1995 heat wave in Chicago. N. Engl. J. Med. 335(2), 84–90 (1996)

    Article  Google Scholar 

  4. Farhan, A.A.; Pattipatim K,; Wang, B.; Luh, P.: Predicting individual thermal comfort using machine learning algorithms. In: 2015 IEEE International Conference on Automation Science and Engineering (CASE), pp. 708–713. IEEE (2015)

  5. Luo, M.; Wang, Z.; Ke, K.; Cao, B.; Zhai, Y.; Zhou, X.: Human metabolic rate and thermal comfort in buildings: the problem and challenge. Build. Environ. 131, 44–52 (2018)

    Article  Google Scholar 

  6. de Dear, R.; Brager, G.: Thermal comfort in naturally ventilated buildings: revisions to Ashrae standard 55. Energy Build. 34(6), 549–561 (2002)

    Article  Google Scholar 

  7. Kim, J.; Schiavon, S.; Brager, G.: Personal comfort models—a new paradigm in thermal comfort for occupant-centric environmental control. Build. Environ. 132, 114–124 (2018)

    Article  Google Scholar 

  8. Auffenberg, F., Stein, S.; Alex, R.: A personalised thermal comfort model using a Bayesian network. In: IJCAI (2015)

  9. Fanger, P.O.: Thermal comfort: analysis and applications in environmental engineering. R. Soc. Health J. 92(3), 164 (1972)

    Google Scholar 

  10. Morresi, N.; Casaccia, S.; Sorcinelli, M.; Arnesano, M.; Uriarte, A.; Torrens-Galdiz, J.I.; Revel, G.M.: Sensing physiological and environmental quantities to measure human thermal comfort through machine learning techniques. IEEE Sens. J. 21(10), 12322–12337 (2021)

    Article  Google Scholar 

  11. Lee, Y.; Lee, H.; Kang, B.H.; Kim, J.K.: Machine learning-based personal thermal comfort model for electric vehicles with local infrared radiant warmers. J. Mech. Sci. Technol. 35, 3239–3247 (2021)

    Article  Google Scholar 

  12. Somu, N.; Sriram, A.; Kowli, A.; Ramamritham, K.: A hybrid deep transfer learning strategy for thermal comfort prediction in buildings. Build. Environ. 203, 108133 (2021)

    Article  Google Scholar 

  13. Abdulgader, M.; Lashhab, F.: Energy-efficient thermal comfort control in smart buildings. In: 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), pp. 0022–0026. IEEE (2021)

  14. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.: The weka data mining software. ACM SIGKDD Explor. Newsl. 11(1), 10 (2009)

    Article  Google Scholar 

  15. von Grabe, J.: Potential of artificial neural networks to predict thermal sensation votes. Appl. Energy 161, 412–424 (2016)

    Article  Google Scholar 

  16. Auffenberg, F.; Snow, S.; Stein, S.; Rogers, A.: A comfort-based approach to smart heating and air conditioning. ACM Trans. Intell. Syst. Technol. 9(3), 1–20 (2017)

    Article  Google Scholar 

  17. Yoon, H.; Lee, H.C.D.; Jo, J.: Prediction of thermal environment in a large space using artificial neural network. Energies 11(2), 418 (2018)

    Article  Google Scholar 

  18. Vellei, M.; Herrera, D.F.M.; Natarajan, S.: The influence of relative humidity on adaptive thermal comfort. Build. Environ. 124, 171–185 (2017)

    Article  Google Scholar 

  19. Lu, S.; Wang, C.L.W.; Hameen, E.: Data-driven simulation of a thermal comfort-based temperature set-point control with ashrae rp884. Build. Environ. 156, 137–146 (2019)

    Article  Google Scholar 

  20. Li, D.; Menassa, C.C.; Kamat, V.R.: Personalized human comfort in indoor building environments under diverse conditioning modes. Build. Environ. 126, 304–317 (2017)

    Article  Google Scholar 

  21. Lee, S.; Bilionis, P.K.I.; Tzempelikos, A.: A Bayesian approach for probabilistic classification and inference of occupant thermal preferences in office buildings. Build. Environ. 118, 323–343 (2017)

    Article  Google Scholar 

  22. Jazizadeh, F.; Ghahramani, A.; Becerik-Gerber, B.; Kichkaylo, T.; Orosz, M.: User-LED decentralized thermal comfort driven HVAC operations for improved efficiency in office buildings. Energy Build. 70, 398–410 (2014)

    Article  Google Scholar 

  23. de Dear, R.; Brager, G.S.: The adaptive model of thermal comfort and energy conservation in the built environment. Int. J. Biometeorol. 45(2), 100–108 (2001)

    Article  Google Scholar 

  24. Peng, H.; Long, F.; Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  25. Chen, Y.; Chen, M.: Using chi-square statistics to measure similarities for text categorization. Expert Syst. Appl. 38(4), 3085–3090 (2011)

    Article  Google Scholar 

  26. Bennasar, M.; Hicks, R.S.Y.: Feature selection using joint mutual information maximisation. Expert Syst. Appl. 42(22), 8520–8532 (2015)

    Article  Google Scholar 

  27. Wold, S.; Esbensen, K.; Geladi, P.: Principal component analysis. Chemom. Intell. Lab. Syst. 2(1–3), 37–52 (1987)

    Article  Google Scholar 

  28. He, H.; Garcia, E.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  29. Platt, J.C.; Nitschke, R.: Sequential minimal optimization: a fast algorithm for training support vector machines. In: Advances in Kernel Methods-Support Vector Learning 208 (1998)

  30. Watson, T.J.: An empirical study of the naive bayes classifier (2011)

  31. Dietterich, T.: Ensemble methods in machine learning. In: Multiple Classifier Systems, pp. 1–15 (2000)

  32. Aftab, M.; Chen, C.; Chau, C.K.; Rahwan, T.: Automatic HVAC control with real-time occupancy recognition and simulation-guided model predictive control in low-cost embedded system. Energy Build. 154, 141–156 (2017)

    Article  Google Scholar 

  33. Rehman, S.U.; Javed, A.R.; Khan, M.U.; Awan, M.N.; Farukh, A.; Hussien, A.: Personalisedcomfort: a personalised thermal comfort model to predict thermal sensation votes for smart building residents. Enterprise Inf. Syst. 1–23 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Rehman Javed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fayyaz, M., Farhan, A.A. & Javed, A.R. Thermal Comfort Model for HVAC Buildings Using Machine Learning. Arab J Sci Eng 47, 2045–2060 (2022). https://doi.org/10.1007/s13369-021-06156-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06156-8

Keywords

Navigation