Skip to main content
Log in

Attack-Resistant and Efficient Cancelable Codeword Generation Using Random walk-Based Methods

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Securely handling the biometric information of an individual is still a major challenge in many applications. For this reason, many cancelable techniques are present which were proposed with an aim to provide security, but adversarial attacks like a similarity-based attack on popular methods have recently been reported in the literature. In this paper, we propose a random walk-based method for cancelable template generation (2-d random walk and circular random walk). The novelty of the proposed method is to generate a secure, distinct cancelable template from fingerprint data. Further, the proposed scheme is immune to different security attacks. It also ensures the randomness of the generated cancelable templates. Our proposed scheme achieves comparable performance in terms of average genuine acceptance rate of \(97.02 \%\), average false acceptance rate of \(0.13 \%\) for different fingerprint data. Moreover, our proposed scheme has FAR (attack) of \(11.11\%\), which is very low compared to the state-of-the-art method (such as BioHashing 62.5%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nagar, A.; Nandakumar, K.; Jain, A.K.: Biometric template transformation: a security analysis. In: Media Forensics and Security II, vol. 7541, p. 75410O. International Society for Optics and Photonics (2010)

  2. Sadhya, D.; Raman, B.: Generation of cancelable iris templates via randomized bit sampling. IEEE Trans. Inf. Forensics Secur. 14(11), 2972–2986 (2019)

    Article  Google Scholar 

  3. Teoh, A.B.; Goh, A.; Ngo, D.C.: Random multispace quantization as an analytic mechanism for biohashing of biometric and random identity inputs. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 1892–1901 (2006)

    Article  Google Scholar 

  4. Sadhya, D.; Singh, S.K.: Providing robust security measures to bloom filter based biometric template protection schemes. Comput. Secur. 67, 59–72 (2017)

    Article  Google Scholar 

  5. Kaur, H.; Khanna, P.: Polycodes: generating cancelable biometric features using polynomial transformation. Multimed. Tools Appl. 79(29), 20729–20752 (2020)

    Article  Google Scholar 

  6. Dong, X.; Jin, Z.; Jin, A.T.B.: A genetic algorithm enabled similarity-based attack on cancellable biometrics. In: 2019 IEEE 10th International Conference on Biometrics Theory, Applications and Systems (BTAS), pp. 1–8. IEEE (2019)

  7. Ratha, N.K.; Connell, J.H.; Bolle, R.M.: Enhancing security and privacy in biometrics-based authentication systems. IBM Syst. J. 40(3), 614–634 (2001)

    Article  Google Scholar 

  8. Jin, Z.; Teoh, A.B.J.; Ong, T.S.; Tee, C.: Fingerprint template protection with minutiae-based bit-string for security and privacy preserving. Expert Syst. Appl. 39(6), 6157–6167 (2012)

    Article  Google Scholar 

  9. Ferrara, M.; Maltoni, D.; Cappelli, R.: Noninvertible minutia cylinder-code representation. IEEE Trans. Inf. Forensics Secur. 7(6), 1727–1737 (2012)

    Article  Google Scholar 

  10. Sandhya, M.; Prasad, M.V.; Chillarige, R.R.: Generating cancellable fingerprint templates based on delaunay triangle feature set construction. IET Biom. 5(2), 131–139 (2016)

    Article  Google Scholar 

  11. Kaur, H.; Khanna, P.: Cancelable features using log-gabor filters for biometric authentication. Multimed. Tools Appl. 76(4), 4673–4694 (2017)

    Article  Google Scholar 

  12. Kaur, H.; Khanna, P.: Random distance method for generating unimodal and multimodal cancelable biometric features. IEEE Trans. Inf. Forensics Secur. 14(3), 709–719 (2018)

    Article  Google Scholar 

  13. Supriya, V.; Manjunatha, R.: Logistic map for cancellable biometrics. In: IOP Conference Series: Materials Science and Engineering, vol. 225, p. 012176. IOP Publishing (2017)

  14. Hsiao, H.I.; Lee, J.: Fingerprint image cryptography based on multiple chaotic systems. Signal Process. 113, 169–181 (2015)

    Article  Google Scholar 

  15. Gueguen, L.; Pesaresi, M.: Multi scale Harris corner detector based on differential morphological decomposition. Pattern Recogn. Lett. 32(14), 1714–1719 (2011)

    Article  Google Scholar 

  16. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  17. Robnik-Šikonja, M.; Kononenko, I.: Theoretical and empirical analysis of relieff and rrelieff. Mach. Learn. 53(1), 23–69 (2003)

    Article  Google Scholar 

  18. Yang, W.; Wang, K.; Zuo, W.: Fast neighborhood component analysis. Neurocomputing 83, 31–37 (2012)

    Article  Google Scholar 

  19. Tuytelaars, T.; Mikolajczyk, K.: Local Invariant Feature Detectors: A Survey. Now Publishers Inc (2008)

  20. Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  21. Jégou, H.; Douze, M.; Schmid, C.; Pérez, P.: Aggregating local descriptors into a compact image representation. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3304–3311. IEEE (2010)

  22. Arandjelovic, R.; Zisserman, A.: All about vlad. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1578–1585 (2013)

  23. Pandey, F.; Dash, P.; Sinha, D.: A random walk-based cancelable biometric template generation. In: Innovations in Computational Intelligence and Computer Vision, pp. 423–429. Springer (2021)

  24. Marsaglia, G.: Diehard test suite. Laste visited 8(01), 2014 (1998). Online: http://www.stat.fsu.edu/pub/diehard/

  25. Pandey, F.; Dash, F.: Randomwalk-Based Methods (2020). https://github.com/priyafav/Randomwalk-based-secure-codeword

  26. Maio, D.; Maltoni, D.; Cappelli, R.; Wayman, J.L.; Jain, A.K.: Fvc2002: second fingerprint verification competition. In: Object Recognition Supported by User Interaction for Service Robots, vol. 3, pp. 811–814. IEEE (2002)

  27. Maio, D.; Maltoni, D.; Cappelli, R.; Wayman, J.L.; Jain, A.K.: Fvc2004: third fingerprint verification competition. In: International Conference on Biometric Authentication, pp. 1–7. Springer (2004)

  28. PolyU, H.: Database ii. 6, 27 (2016)

  29. Pandya, B.; Cosma, G.; Alani, A.A.; Taherkhani, A.; Bharadi, V.; McGinnity, T.: Fingerprint classification using a deep convolutional neural network. In: 2018 4th International Conference on Information Management (ICIM), pp. 86–91. IEEE (2018)

  30. Darlow, L.N.; Rosman, B.: Fingerprint minutiae extraction using deep learning. In: 2017 IEEE International Joint Conference on Biometrics (IJCB), pp. 22–30. IEEE (2017)

  31. Wang, S.; Hu, J.: Design of alignment-free cancelable fingerprint templates via curtailed circular convolution. Pattern Recogn. 47(3), 1321–1329 (2014)

    Article  Google Scholar 

  32. Chen, Y.; Wo, Y.; Xie, R.; Wu, C.; Han, G.: Deep secure quantization: on secure biometric hashing against similarity-based attacks. Signal Process. 154, 314–323 (2019)

    Article  Google Scholar 

  33. Marini, F.; Walczak, B.: Particle swarm optimization (pso). A tutorial. Chemom. Intell. Lab. Syst. 149, 153–165 (2015)

    Article  Google Scholar 

Download references

Funding

This study was not funded by any agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyabrata Dash.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, F., Dash, P. & Sinha, D. Attack-Resistant and Efficient Cancelable Codeword Generation Using Random walk-Based Methods. Arab J Sci Eng 47, 2025–2043 (2022). https://doi.org/10.1007/s13369-021-06133-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06133-1

Keywords

Navigation