Skip to main content

Advertisement

Log in

Total gaseous mercury levels in the vicinity of the Central Mexico mountain mining zone and its dispersion area

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Mercury emitted to the atmosphere has a long residence time (up to a year) and can travel long distances before being deposited to land or ocean surfaces. The objective of this study were to evaluate the total gaseous mercury (TGM) ambient levels in the San Joaquín, Querétaro, mining region and to observe whether the TGM emissions from mining activity impact other regions of the country due to its dispersion. TGM was measured using an automatic Tekran model 2537A air mercury analyzer; the monitoring was carried out during March, April, and May 2015. From the ambient measurements carried out, the 8-h average concentrations range from 67 to 74 ng/m3, while the monthly averages for these three months were from 40 to 41 ng/m3 (1.3 ± 0.4 ng/m−3). Mercury concentrations did not vary significantly during the 24-h survey measurement, reporting an average value of 40.3 ± 0.75 ng/m3 (40.1 ng/m3 averages) and an extreme value of 235 ng/m3. In order to identify the possible TGM fate, a set of trajectories was obtained for different time periods using the wind fields from the Water Research and Forecasting (WRF) meteorological model and a dispersion was performed by using the CALPUFF model driven by the WRF-CALMET model to identify the TGM levels in the site vicinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Raw data is not publicly available; data requests can be made to the corresponding author: PhD. Rocío García through this email: “gmrocio@atmosfera.unam.mx”.

Code availability

The code is available from the corresponding author by request.

References

  • ASTM- Standard test method for elemental, oxidized, particle-bound and total mercury in flue gas generated from coal-fired stationary sources (Ontario Hydro Method), ASTM D-6784–02, 2002; CFR 40, Part 60, 2005 (2002) American Society for Testing and Materials, West Conshohocken, PA

  • ATSDR- Agency for Toxic Substances and Disease Registry (2010) Minimal risk levels (MRLs) for hazardous substances. Agency for Toxic Substances and Disease Registry. http://www.atsdr.cdc.gov/mrls/mrllist.asp.

  • Brooks S, Lindberg S, Southworth G, Arimoto R (2008) Springtime atmospheric mercury speciation in the McMurdo Antarctica Coastal Region. Atmos Environ 42(12):2885–2893. https://doi.org/10.1016/j.atmosenv.2007.06.038

    Article  CAS  Google Scholar 

  • Clifton JC (2007) 2nd. Mercury exposure and public health. Pediatric Clinic North America 54(2):237-viii. https://doi.org/10.1016/j.pcl.2007.02

  • De la Rosa DA, Velasco A, Rosas A, Volke-Sepúlveda T (2006) Total gaseous mercury and volatile organic compounds measurements at five municipal solid waste disposal sites surrounding the Mexico City Metropolitan Area. Atmos Environ 40:2079–2088. https://doi.org/10.1016/j.atmosenv.2005

    Article  Google Scholar 

  • De la Rosa T, Volke-Sepúlveda G, Solórzano C, Green R, Tordon SB (2004) Survey of atmospheric total gaseous mercury in Mexico. Atmos Environ 38(29):4839–4846. https://doi.org/10.1016/j.atmosenv.2004.06

    Article  Google Scholar 

  • Ebinghaus R, Kock HH, Temme C et al (2002) Antarctic springtime depletion of atmospheric mercury. Environ Sci Technol 36(6):1238–1244

    Article  CAS  Google Scholar 

  • European Environment Agency (EEA) (2017) Air Quality in Europe report. https://doi.org/10.2800/850018

  • Esbrí JM, Higueras PL, Martínez-Coronado A, Naharro R. 4D dispersion of total gaseous mercury derived from a mining source: identification of criteria to assess risks related with high concentrations of atmospheric mercury. AtmosChemPhys Discuss. https://doi.org/10.5194/acp-2019-1107

  • Fu XW, Feng X, Shang LH, Wang SF, Zhang H (2012) Two years of measurements of atmospheric total gaseous mercury (TGM) at a remote site in Mt. Changbai area, Northeastern China. Atmos Chem Phys 12:4215–4226. https://doi.org/10.5194/acp-12-4215

    Article  CAS  Google Scholar 

  • Fu XW, Zhu W, Zhang H, Wang X, Sommar J, Yang X, Lin CJ, Feng XB (2016) Depletion of atmospheric gaseous elemental mercury by plant uptake at Mt. Changbai, Northeast China. Atmos Chem Phys 16(20):12861–12873. https://doi.org/10.5194/acp-16-12861-20

    Article  CAS  Google Scholar 

  • González-Carrasco V, Velasquez-Lopez PC, Olivero-Verbel J, Pájaro-Castro N (2011) Air mercury contamination in the gold mining town of Portovelo, Ecuador. Bull Environ Contam Toxicol 87(3):250–253. https://doi.org/10.1007/s00128-011-0345-5

    Article  CAS  Google Scholar 

  • Goodsite ME, Plane JM, Skov H (2004) (2004) A theoretical study of the oxidation of Hg0 to HgBr 2 in the troposphere. Environ Sci Technol. 38(6):1772–1776. https://doi.org/10.1021/es034680

    Article  CAS  Google Scholar 

  • Guan ZG, Lundin P, Somesfalean Mei L, G, Svanberg S. (2010) Vertical lidar sounding of atomic mercury and nitric oxide in a major Chinese city. Appl Phys B. 101:465–470. https://doi.org/10.1007/s00340-010-4166-8

    Article  CAS  Google Scholar 

  • Gustin MS, Huang J, Miller MB, Peterson C, Jaffe DA, Ambrose J, Finley BD, Lyman SN, Call K, Talbot R, Feddersen D, Mao H, Lindberg SE (2013) Do we understand what the mercury speciation instruments are actually measuring? Results of RAMIX. Environ Sci Technol 47(13):7295–7306. https://doi.org/10.1021/es3039104

    Article  CAS  Google Scholar 

  • Gworek B, Dmuchowski W, Baczewska, Baczewska AH, Brągoszewska P, Kalabun OB, Justyna WJ (2017) Air contamination by mercury, emissions and transformations a review. Water Air Soil Pollut. 228:123

    Article  Google Scholar 

  • Higueras P, Oyarzun R, Lillo J, Sánchez-Hernández JC, Molina JA, Esbrí JM, Lorenzo S (2006) The Almadén district (Spain): 445 anatomy of one of the world’s largest hg-contaminated sites. Sci Total Environ 356(1–3):112–124. https://doi.org/10.1016/j.scitotenv.2005.04.042

    Article  CAS  Google Scholar 

  • Higueras, P., María Esbrí, J., Oyarzun, R., Llanos, W., Martínez-Coronado, A., Lillo, J., López-Berdonces, M.A., García-Noguero, E. M (2013) Industrial and natural sources of gaseous elemental mercury in the Almadén district (Spain): an updated report on this issue after the ceasing of mining and metallurgical activities in 2003 and major land reclamation works. Environmental Research 125:197–208, 2013. https://doi.org/10.1016/j.envres.2012.10.011Get rights and content

  • Higueras, P., Oyarzun, R., Kotnik, J., Esbrí, J.M., Martínez-Coronado, A., Horvat, M., López-Berdonces, M.A., Llanos, W., Vaselli, O., Nisi, B., Mashyanov, N., Ryzov, V., Spiric, Z., Panichev, N., McCrindle, R., Feng, X., Fu, X., Lillo, J., Loredo, J., García, M.E., Alfonso, P., Villegas, K., Palacios, S., Oyarzún, J., Maturana, H., Contreras, F., Adams, M., Ribeiro-Guevara, S., Niecenski, L.F., Giammanco, S., Huremovic, J (2014) A compilation of field surveys on gaseous elemental mercury (GEM) from contrasting environmental settings in Europe, South America, South Africa and China: separating fads from facts Environmental Geochemistry and Health 36(4), 713–734. http://hdl.handle.net/2117/24259: https://doi.org/10.1007/s10653-013-9591-2. ISSN0269–4042

  • Investigation of the light-enhanced emission of mercury from naturally enriched substrates Atmospheric Environment (R827622E02) American Chemical Society, Washington, DC, 36(20):3241–3254

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton, London, New York

    Google Scholar 

  • Lindberg S, Bullock R, Ebinghaus R, Engstrom D, Feng X, Fitzgerald W, Pirrone N, Prestbo E, Seigneur C. (2007). Panel on Source Attribution of Atmospheric Mercury. A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio. https://doi.org/10.1579/0044-744

  • Llanos W, Kocman D, Higueras P, Horvat M (2011) Mercury emission and dispersion models from soils contaminated by cinnabar 465 mining and metallurgy. J Environ Monit 13:3460–3468. https://doi.org/10.1039/c1em10694

    Article  CAS  Google Scholar 

  • National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce (2015): NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and Forecast Grids. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. Dataset. https://doi.org/10.5065/D65Q4T4Z

  • OEHHA/ARB: Office of Environmental Health Hazard Assessment and Air Resources Board: Approved Risk Assessment Health Values; Sacramento, CA. (2019) www.arb.ca.gov/toxics/healthval/contable. The OEHHA has adopted three technical support documents for these guidelines, which can be found on their website: http://www.oehha.ca.gov/air/hot_spots/index.html

  • Pfaffhuber KA, Berg T, Hirdman D, Stohl A (2012) Atmospheric mercury observations from Antarctica: seasonal variation and source and sink region calculations. Atmospheric Chemistry and Physic 12:3241–3251. https://doi.org/10.5194/acp-12-3241-2012

    Article  CAS  Google Scholar 

  • Pacyna, J. M., Munthe, J., Wilson, S. (2008). Global emission of mercury to the atmosphere. In: AMAP/UNEP, technical background report to the global atmospheric mercury assessment Arctic Monitoring and Assessment Programme, UNEP Chemical Branch. Atmospheric Environment 44(20):2487–2499, https://doi.org/10.1016/j.atmosenv.2009.06.009

  • Pirrone N, Cinnirella S, Feng X, Finkelman RB, Friedli HR, Leaner J, Mason R, Mukherjee AB, Stracher GB, Streets DG, Telmer K (2010) Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos Chem Phys 10:5951–5964. https://doi.org/10.5194/acp-10-5951-2010

    Article  CAS  Google Scholar 

  • Rayaboshapko, A. G., & Korolev, V. A. (1997). Mercury in the atmosphere: estimation of model parameters. Meteorological Synthesizing Centre - East, EMEP/MSC-E, Report 7/97, Moscow.

  • Rice KM, Walker EM Jr, Wu M, Gillette C, Blough ER (2014) Environmental mercury and its toxic effects. J Prev Med Public Health 47(2):74–83. https://doi.org/10.3961/jpmph.2014.47.2.74

    Article  Google Scholar 

  • Schroeder WH, Anlauf KG, Barrie LA, Lu JY, Steffen A, Schneeberger DR et al (1998) Arctic springtime depletion of mercury. Nature 394:331–332. https://doi.org/10.1038/28530

    Article  CAS  Google Scholar 

  • Seigneur C, Wrobel J, Constantinou E (1994) A chemical kinetic mechanism for atmospheric inorganic mercury. Environ Sci Technol. 28(9):1589–9. https://doi.org/10.1021/es00058a009

    Article  CAS  Google Scholar 

  • Skov H, Christensen JH, Goodsite ME, Heidam NZ, Jensen B, Wåhlin P, Geernaert G (2004) Fate of elemental mercury in the Arctic during atmospheric mercury depletion episodes and the load of atmospheric mercury to the Arctic. Environmental Science Technology 38(8):2373–2382. https://doi.org/10.1021/es030080h

    Article  CAS  Google Scholar 

  • Skov, H., Bullock, R., Christensen, J. H., Sørensen, L. L (2008) Atmospheric pathways. In: AMAP/UNEP, technical background report to the global atmospheric mercury assessment. Arctic Monitoring and Assessment Programme/ UNEP Chemicals Branch, pp159.

  • Statistical methods for trend detection and analysis in the environmental sciences. John Wiley and Sons Ltd., West Sussex, Reino Unido, 388

  • Tekran Instruments Corporation (1999) Model 2537A Mercury Vapour Analyzer: User Manual. Ontario, Toronto

    Google Scholar 

  • UNEP- United Nations Environmental (2019) Global Mercury Assessment 2018. UN Environment Programme, Chemicals and Health Branch Geneva, Switzerland. ISBN: 978–92–807–3744–8.

  • US-Environmental Protection Agency (2003) Support Center for Regulatory Atmospheric Modeling (SCRAM). Air Quality Dispersion Modeling - Alternative Models.

  • Wan Q, Feng X, Lu J, Zheng W, Song X, Han S, Xu H (2009) Atmospheric mercury in Changbai Mountain area, northeastern China I. The seasonal distribution pattern of total gaseous mercury and its potential sources. Environmental Research. 109(3):201–206. https://doi.org/10.1016/j.envres2008w

  • Weiss-Penzias P, Jaffe AD, McClintick A, Prestbo EM, Landis M (2003) S (2003) Gaseous elemental mercury in the marine boundary layer: evidence for rapid removal in anthropogenic pollution. Environ Sci Technol 37(17):3755–3763. https://doi.org/10.1021/es0341081

    Article  CAS  Google Scholar 

  • Weiss-Penzias P, Amos HM, Selin NE, Gustin MS, Jaffe DA, Obrist D, Sheu G-R, Giang A (2015) Use of a global model to understand speciated atmospheric mercury observations at five high-elevation sites. Atmos Chem Phys 15:1161–1173. https://doi.org/10.5194/acp15-1161

    Article  Google Scholar 

  • Witherow RA, Lyons WB. (2008). Mercury deposition in a polar desert ecosystem. Environmental Science and Technology 2008 42 (13), 4710–4716. https://doi.org/10.1021/es800022g

  • Yang WY, Cao W, Chung T-S, y Morris J. (2005) Applied numerical methods using Matlab. John Wiley & Sons, Nueva Jersey, EUA, p 511

    Book  Google Scholar 

  • Zhang L, Wang S, Wang L, Wu Y, Duan L, Wu O, Wang F, Yang M, Yang H, Hao J, Liu X (2015) Updated emission inventories for speciated atmospheric mercury from anthropogenic sources in China. Environ Sci Technol 49(5):3185–3194. https://doi.org/10.1021/es504840m

    Article  CAS  Google Scholar 

  • Zhu W, Sommar J, Lin C-J, Feng X (2015) Mercury vapor air–surface exchange measured by collocated micrometeorological and enclosure methods – part I: data comparability and method characteristics. Atmos Chem Phys 15:685–702. https://doi.org/10.5194/acp-15-685-2015

    Article  CAS  Google Scholar 

  • Zhu W, Lin C-J, Wang X, Sommar J, Fu X, Feng X (2016) Global observations and modeling of atmosphere–surface exchange of elemental mercury: a critical review. Atmos Chem Phys 16(7):4451–4480. https://doi.org/10.5194/acp-16-4451-2016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Manuel Garcia and Wilfrido Gutiérrez for their technical support and Martin Rangel, Isela Martinez, and Moises Lopez of Postgraduate Program at the National Autonomous University of México (UNAM for its initials in Spanish).

Funding

This work was funded by grant National Institute of Ecology and Climate Change, México (INECC for its initials in Spanish).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocío García-Martínez.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Martínez, R., Hernández-Silva, G., Pavia-Hernández, R. et al. Total gaseous mercury levels in the vicinity of the Central Mexico mountain mining zone and its dispersion area. Air Qual Atmos Health 14, 1953–1967 (2021). https://doi.org/10.1007/s11869-021-01068-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-021-01068-w

Keywords

Navigation