Skip to main content
Log in

Recovery of converter steel slag to prepare catalytic H2O2 degradation of dye wastewater as a catalyst

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Whether steel slag or printing and dyeing wastewater not only pollutes the environment but also occupies a lot of land. In this paper, steel slag is pretreated by acid leaching method at normal temperature and pressure to obtain chlorinated steel slag solution system. Then the system is electrolyzed by an electrochemical membrane method to obtain polymetallic carbonate precipitation. The electrolytic product is used as a precursor to obtain polymetallic oxide by calcination. Simulated dye wastewater was degraded with hydrogen peroxide as oxidant and polymetallic carbonate and its oxide as the photocatalysts, and their catalytic performances were compared. The degradation rates of Ca/Mg/Fe/Al/Mn/Ti/CO3 and Ca/Mg/Fe/Al/Mn/Ti/O catalysts were 3.05 times and 2.91 times higher than that of the blank catalyst, respectively. Ca/Mg/Fe/Al/Mn/Ti/O showed the best degradation efficiency and the removal rate of MB is as high as 99.56% after 80 min of illumination. Considering that the material is derived from low-cost solid steel scrap slag, it can not only treat wastewater but also solve the problems of harmful accumulation of solid waste, so the prepared materials are environmentally friendly and economic photocatalytic materials for printing and dyeing wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. İ Yüksel, A review of steel slag usage in construction industry for sustainable development. Environ. Dev. Sustain. 19(2), 369–384 (2017)

    Article  Google Scholar 

  2. G. Wang, Y. Wang, Z. Gao, Use of steel slag as a granular material: volume expansion prediction and usability criteria. J. Hazard. Mater. 184(1–3), 555–560 (2010)

    Article  CAS  Google Scholar 

  3. L. Kang, H.L. Du, H. Zhang et al., Systematic research on the application of steel slag resources under the background of big data. Complexity 2018, 1–12 (2018)

    Google Scholar 

  4. J. Xiong, Z. He, Q. Mahmood et al., Phosphate removal from solution using steel slag through magnetic separation. J. Hazard. Mater. 152(1), 211–215 (2008)

    Article  CAS  Google Scholar 

  5. P.E. Tsakiridis, G.D. Papadimitriou, S. Tsivilis et al., Utilization of steel slag for Portland cement clinker production. J. Hazard. Mater. 152(2), 805–811 (2008)

    Article  CAS  Google Scholar 

  6. P. Ahmedzade, B. Sengoz, Evaluation of steel slag coarse aggregate in hot mix asphalt concrete. J. Hazard. Mater. 165(1–3), 300–305 (2009)

    Article  CAS  Google Scholar 

  7. F. Li, J. Huang, Q. Xia et al., Direct contact membrane distillation for the treatment of industrial dyeing wastewater and characteristic pollutants. Sep. Purif. Technol. 195, 83–91 (2018)

    Article  CAS  Google Scholar 

  8. K. Lu, X.L. Zhang, Y.L. Zhao et al., Removal of color from textile dyeing wastewater by foam separation. J. Hazard. Mater. 182(1–3), 928–932 (2010)

    Article  CAS  Google Scholar 

  9. C.T. Wang, W.L. Chou, M.H. Chung et al., COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode. Desalination 253(1–3), 129–134 (2010)

    Article  CAS  Google Scholar 

  10. A. Fujishima, K. Honda, Electrochemical photocatalysis of water at semiconductor electrode. Nature 238(5358), 37–38 (1972)

    Article  CAS  Google Scholar 

  11. A.J. Attia, S.H. Kadhim, F.H. Hussein, Photocatalytic degradation of textile dyeing wastewater using titanium dioxide and zinc oxide. J. Chem. 5(2), 219–223 (2012)

    Google Scholar 

  12. H.J. Song, L. Zhu, X. Wang, Experimental research on degradation of azo dye wasterwater by photocatalysis of nano-TiO2 doped with Ce/Fe. Appl. Mech. Mater. 295–298, 331–334 (2013)

    Article  Google Scholar 

  13. S.J. Li, Z.C. Ma, L. Wang et al., Influence of MnO2 on the photocatalytic activity of P-25 TiO2 in the degradation of methyl orange. Sci. Chin. Ser. B 51(2), 179–185 (2008)

    Article  CAS  Google Scholar 

  14. R. Dou, H. Cheng, J. Ma et al., Catalytic degradation of methylene blue through activation of bisulfite with CoO nanoparticles. Sep. Purif. Technol. 239, 116561 (2020)

    Article  CAS  Google Scholar 

  15. A.F. Cabrera, C.E.R. Torres, S.G. Marchetti et al., Degradation of methylene blue dye under dark and visible light conditions in presence of hybrid composites of nanostructured MgFe2O4 ferrites and oxygenated organic compounds. J. Environ. Chem. Eng. 8(5), 104274 (2020)

    Article  CAS  Google Scholar 

  16. Z. Zhang, J. Hao, W. Yang et al., Porous Co3O4 nanorods–reduced graphene oxide with intrinsic peroxidase-like activity and catalysis in the degradation of methylene blue. ACS Appl. Mater. Interfaces 5(9), 3809–3815 (2013)

    Article  CAS  Google Scholar 

  17. Y. Liu, W. Jin, Y. Zhao et al., Enhanced catalytic degradation of methylene blue by α-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions. Appl. Catal. B 206, 642–652 (2017)

    Article  CAS  Google Scholar 

  18. Z. Chen, Z. Nan, Controlling the polymorph and morphology of CaCO3 crystals using surfactant mixtures. J. Colloid Interface Sci. 358(2), 416–422 (2011)

    Article  CAS  Google Scholar 

  19. H. Choe, J.H. Lee, J.H. Kim, Polyurethane composite foams including CaCO3 fillers for enhanced sound absorption and compression properties. Compos. Sci. Technol. 194, 108153 (2020)

    Article  CAS  Google Scholar 

  20. S. Demir, S.B. Gök, M.V. Kahraman, α-Amylase immobilization on functionalized nano CaCO3 by covalent attachment. Starch-Stärke 64(1), 3–9 (2012)

    Article  CAS  Google Scholar 

  21. M.A.M. Motchelaho, H. Xiong, M. Moyo et al., Effect of acid treatment on the surface of multiwalled carbon nanotubes prepared from Fe–Co supported on CaCO3: correlation with Fischer-Tropsch catalyst activity. J. Mol. Catal. A 335(1–2), 189–198 (2011)

    Article  CAS  Google Scholar 

  22. Z. Mirghiasi, F. Bakhtiari, E. Darezereshki et al., Preparation and characterization of CaO nanoparticles from Ca (OH)2 by direct thermal decomposition method. J. Ind. Eng. Chem. 20(1), 113–117 (2014)

    Article  CAS  Google Scholar 

  23. J. Cao, C. Pan, Y. Ding et al., Constructing nitrogen vacancy introduced g-C3N4 pn homojunction for enhanced photocatalytic activity. J. Environ. Chem. Eng. 7(2), 102984 (2019)

    Article  CAS  Google Scholar 

  24. X. Zhang, Y. Liu, H. Liu et al., FeSe2/hematite nn heterojunction with oxygen spillover for highly efficient NO2 gas sensing. Sens. Actuators B 345, 130357 (2021). https://doi.org/10.1016/j.snb.2021.130357

    Article  CAS  Google Scholar 

  25. A. Bathla, D. Singla, B. Pal, Highly efficient CaCO3-CaO extracted from tap water distillation for effective adsorption and photocatalytic degradation of malachite green dye. Mater. Res. Bull. 116, 1–7 (2019)

    Article  CAS  Google Scholar 

  26. M. Olivares-Marín, E.M. Cuerda-Correa, A. Nieto-Sánchez et al., Influence of morphology, porosity and crystal structure of CaCO3 precursors on the CO2 capture performance of CaO-derived sorbents. Chem. Eng. J. 217, 71–81 (2013)

    Article  Google Scholar 

  27. J.S.C. Campos, A.A. Ribeiro, C.X. Cardoso, Preparation and characterization of PVDF/CaCO3 composites. Mater. Sci. Eng. B 136(2–3), 123–128 (2007)

    Article  CAS  Google Scholar 

  28. M. Hariharan, N. Varghese, A.B. Cherian, et al. Synthesis and characterisation of CaCO3 (Calcite) nano particles from cockle shells using chitosan as precursor. Int. J. Sci. Res. Publ. 4(10), (2014)

  29. A.C. Alba-Rubio, J. Santamaría-González, J.M. Mérida-Robles et al., Heterogeneous transesterification processes by using CaO supported on zinc oxide as basic catalysts. Catal. Today 149(3–4), 281–287 (2010)

    Article  CAS  Google Scholar 

  30. R.S. Kumar, K.S. Min, S.H. Lee et al., Synthesis of novel panchromatic porphyrin-squaraine dye and application towards TiO2 combined photocatalysis. J. Photochem. Photobiol. A 397, 112595 (2020)

    Article  Google Scholar 

  31. S.Y.T. Djoko, H. Bashiri, E.T. Njoyim et al., Urea and green tea like precursors for the preparation of g-C3N4 based carbon nanomaterials (CNMs) composites as photocatalysts for photodegradation of pollutants under UV light irradiation. J. Photochem. Photobiol. A 398, 112596 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. U1508217 and U1710257) and the Fundamental Research Funds for the Central Universities (Grant No. N162505002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingan Zhang.

Ethics declarations

Conflict of interest

All authors (Lin Shengnan, Zhang Tingan, Fu Daxue, Xuejiao Cao, and Xiaoqi Liu) declare that they have no conflict of interest or financial conflicts to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, S., Zhang, T., Cao, X. et al. Recovery of converter steel slag to prepare catalytic H2O2 degradation of dye wastewater as a catalyst. J Mater Sci: Mater Electron 32, 24889–24901 (2021). https://doi.org/10.1007/s10854-021-06947-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06947-7

Navigation