Skip to main content

Advertisement

Log in

Engineering microstructure of LiFe(MoO4)2 as an advanced anode material for rechargeable lithium-ion battery

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Graphite is considered as an ideal anode material for lithium-ion battery (LIB) due to its high stability, good conductivity and wide source of availability. However, the low energy density and theoretical capacity of graphite cannot meet the needs of high performance anode materials. To circumvent this issue, alternative materials have been sought for many years now. Herein, we report the synthesis of highly crystalline lithium iron molybdate LiFe(MoO4)2 by combustion method and evaluated its performance as an anode material for lithium-ion batteries. Triclinic LiFe(MoO4)2 crystals having particle size 2–5 μm with good crystallinity were obtained. The material shows long cycle life and high rate performance than commercial graphite and exhibits first reversible discharge capacity of 931.6 mAh/g at a current density of 100 mA/g which is three times higher than commercial graphite. The high specific capacity together with the outstanding rate and cycle performance makes LiFe(MoO4)2 a promising anode material for LIB. A detailed analysis on the crystal structure and electronic properties of LiFe(MoO4)2 is presented based on DFT studies to complement the experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Han, Y. Mu, J. Yu, Nanoscopically and uniformly distributed SnO2@TiO2/C composite with highly mesoporous structure and bichemical bonds for enhanced lithium ion storage performances. Mater. Adv. 1, 421–429 (2020)

    Article  CAS  Google Scholar 

  2. K. Hosoya, T. Kamidaira, T. Tsuda, A. Imanishi, M. Haruta, T. Doi, M. Inaba, S. Kuwabata, Lithium-ion battery performance enhanced by the combination of Si thin flake anodes and binary ionic liquid systems. Mater. Adv. 1, 625–631 (2020)

    Article  CAS  Google Scholar 

  3. M.S. Tamboli, H.S. Jadhav, D.R. Patil, A.F. Shaikh, S.S. Patil, J.G. Seo, H. Choi, S.W. Gosavi, B. B. Kale, Hierarchical novel NiCo2O4/BiVO4 hybrid heterostructure as an advanced anode material for rechargeable lithium ion battery. Int. J. Energy Res. 44, 12126–12135 (2020)

    Article  CAS  Google Scholar 

  4. M. Winter, J.O. Besenhard, M.E. Spahr, P. Novák, Insertion electrode materials for rechargeable lithium batteries. J. Adv. Mater. 10(10), 725–763 (1998)

    Article  CAS  Google Scholar 

  5. G.-A. Nazri, G. Pistoia, Lithium Batteries: Science and Technology (Springer Science + Business Media, New York, USA, 2008)

    Google Scholar 

  6. K. Zhong, X. Xia, B. Zhang, H. Li, Z. Wang, L. Chen, MnO powder as anode active materials for lithium ion batteries. J. Power Sources 195, 3300–3308 (2010)

    Article  CAS  Google Scholar 

  7. D. Xu, G. Luo, J. Yu, W. Chen, C. Zhang, D. Ouyang, Y. Fang, X. Yu, Quadrangular-CNT-Fe3O4-C composite based on quadrilateral carbon nanotubes as anode materials for high performance lithium-ion batteries. J. Alloys Compd. 702, 499–508 (2017)

    Article  CAS  Google Scholar 

  8. W. Xie, L. Gu, F. Xia, B. Liu, X. Hou, Q. Wang, D. Liu, D. He, Fabrication of voids-involved SnO2@C nanofibers electrodes with highly reversible Sn/SnO2 conversion and much enhanced coulombic efficiency for lithium-ion batteries. J. Power Sources 327, 21–28 (2016)

    Article  CAS  Google Scholar 

  9. D.T. Ngo, R.S. Kalubarme, H.T.T. Le, C.-N. Park, C.-J. Park, Conducting additive-free amorphous GeO2/C composite as a high capacity and long-term stability anode for lithium ion batteries. Nanoscale 7, 2552–2560 (2015)

    Article  CAS  Google Scholar 

  10. M.V. Reddy, Y. Xu, V. Rajarajan, T. Ouyang, B.V.R. Chowdari, Template free facile molten synthesis and energy storage studies on MCo2O4 (M = Mg, Mn) as anode for Li-ion batteries. ACS Sustain. Chem. Eng. 3, 3035–3042 (2015)

    Article  CAS  Google Scholar 

  11. A.F. Shaikh, R.S. Kalubarme, M.S. Tamboli, S.S. Patil, M.V. Kulkarni, D.R. Patil, S.W. Gosavi, C.-J. Park, B.B. Kale, Nanowires of Ni substituted MnCo2O4 as an anode material for high performance lithium-ion battery. ChemistrySelect 2, 4630–4637 (2017)

    Article  CAS  Google Scholar 

  12. M.V. Reddy, Z. Beichen, K.P. Loh, B.V.R. Chowdari, Facile synthesis of Co3O4 by molten salt method and its Li-storage performance. CrystEngComm 15, 3568–3574 (2013)

    Article  CAS  Google Scholar 

  13. L. Wang, Y. Zheng, X. Wang, S. Chen, F. Xu, L. Zuo, J. Wu, L. Sun, Z. Li, H. Hou, Y. Song, Nitrogen-doped porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 6(10), 7117–7125 (2014)

    Article  CAS  Google Scholar 

  14. G. Huang, S. Xu, S. Lu, L. Li, H. Sun, Micro-/nanostructured Co3O4 anode with enhanced rate capability for lithium-ion batteries. ACS Appl. Mater. Interfaces 6, 7117–7125 (2014)

    CAS  Google Scholar 

  15. Z.W. Zhao, Z.P. Guo, H.K. Liu, Non-aqueous synthesis of crystalline Co3O4 powders using alcohol and cobalt chloride as a versatile reaction system for controllable morphology. J. Power Sources 147(1–2), 264–268 (2005)

    Article  CAS  Google Scholar 

  16. L. Li, K.H. Seng, Z. Chen, Z. Guo, H.K. Liu, Self-assembly of hierarchical star-like Co3O4 micro/nanostructures and their application in lithium ion batteries. Nanoscale 5(5), 1922–1928 (2013)

    Article  CAS  Google Scholar 

  17. A.M. Hashem, A.E. Abdel-Ghany, R.S. El-Tawil, S. Indris, H. Ehrenberg, A. Mauger, C.M. Julien, Amorphous Mo5O14-type/carbon nanocomposite with enhanced electrochemical capability for lithium-ion batteries. J. Nanomater. 10(1), 8 (2020)

    Article  CAS  Google Scholar 

  18. A. Manthiram, J.B. Goodenough, Lithium insertion into Fe2(SO4)3 frameworks. J. Power Sources 26, 403–408 (1989)

    Article  CAS  Google Scholar 

  19. C. Masquelier, A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, New cathode materials for rechargeable lithium batteries: the 3-D framework structures Li3Fe2(XO4)3 (X = P, As). J. Solid State Chem. 135(2), 228–234 (1998)

    Article  CAS  Google Scholar 

  20. K.S. Nanjundaswamy, A.K. Padhi, J.B. Goodenough, S. Okada, H. Ohtsuka, H. Arai, J. Yamaki, Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds. Solid State Ion. 92, 1–0 (1996)

    Article  CAS  Google Scholar 

  21. M. Alvarez-Vega, U. Amador, M.E.A. Dompablo, Electrochemical study of Li3Fe(MoO4)3 as positive electrode in lithium cells. J. Electrochem. Soc. 152, A1306 (2005)

    Article  CAS  Google Scholar 

  22. S. Chen, H. Duan, Z. Zhou, Q. Fan, Y. Zhao, Y. Dong, Lithiated bimetallic oxide, Li3Fe(MoO4)3, as a high-performance anode material for lithium-ion batteries and its multielectron reaction mechanism. J. Power Sources 476, 228656 (2020)

    Article  CAS  Google Scholar 

  23. C. Wurm, M. Morcrette, G. Rousse, L.c. Dupont, C. Masquelier, Lithium insertion/extraction into/from LiMX2O7 compositions (M = Fe, V; X = P, As) prepared via a solution method. Chem. Mater. 14, 2701–2710 (2002)

    Article  CAS  Google Scholar 

  24. A.M. Tamboli, M.S. Tamboli, C.S. Praveen, P.K. Dwivedi, I. Karbhal, S.W. Gosavi, M.V. Shelke, B.B. Kale, Architecture of NaFe(MoO4)2 as a novel anode material for rechargeable lithium and sodium ion batteries. Appl. Surf. Sci. 559, 149903 (2021)

    Article  CAS  Google Scholar 

  25. A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phospho-olivines as positive‐electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188 (1997)

    Article  CAS  Google Scholar 

  26. M. Anji Reddy, V. Pralong, V. Caignaert, U.V. Varadaraju, B. Raveau, Monoclinic iron hydroxy sulphate: a new route to electrode materials. Electrochem. Commun. 11, 1807–1810 (2009)

    Article  CAS  Google Scholar 

  27. S.-H. Lee, Y.-H. Kim, R. Deshpande, P.A. Parilla, E. Whitney, D.T. Gillaspie, K.M. Jones, A.H. Mahan, S. Zhang, A.C. Dillon, Reversible lithium-ion insertion in molybdenum oxide nanoparticles. J. Adv. Mater. 20, 3627–3632 (2008)

    Article  CAS  Google Scholar 

  28. H. Yu, C. Guan, X. Rui, B. Ouyang, B. Yadian, Y. Huang, H. Zhang, H.E. Hoster, H.J. Fan, Q. Yan, Hierarchically porous three-dimensional electrodes of CoMoO4 and ZnCo2O4 and their high anode performance for lithium ion batteries. Nanoscale 6, 10556–10561 (2014)

    Article  CAS  Google Scholar 

  29. Z. Zhang, W. Li, T.-W. Ng, W. Kang, C.-S. Lee, W. Zhang, Iron (ii) molybdate (FeMoO4) nanorods as a high-performance anode for lithium ion batteries: structural and chemical evolution upon cycling. J. Mater. Chem. A 3, 20527–20534 (2015)

    Article  CAS  Google Scholar 

  30. L. Wang, Y. He, Y. Mu, M. Liu, Y. Chen, Y. Zhao, X. Lai, J. Bi, D. Gao, Sintering temperature induced evolution of microstructures and enhanced electrochemical performances: sol-gel derived LiFe(MoO4)2 microcrystals as a promising anode material for lithium-ion batteries. Front. Chem. 6, 492 (2018)

    Article  CAS  Google Scholar 

  31. L. Wang, Y. He, Y. Mu, B. Wu, M. Liu, Y. Zhao, X. Lai, J. Bi, D. Gao, Sol–gel driving LiFe(MoO4)2 microcrystals: high capacity and superior cycling stability for anode material in lithium ion batteries. Electron. Mater. Lett. 15, 186–191 (2019)

    Article  CAS  Google Scholar 

  32. M. Devi, U.V. Varadaraju, Lithium insertion in lithium iron molybdate. Electrochem. Commun. 18, 112–115 (2012)

    Article  CAS  Google Scholar 

  33. N. Chen, Y. Yao, D. Wang, Y. Wei, X. Bie, C. Wang, G. Chen, F. Du, LiFe(MoO4)2 as a novel anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 6, 10661–10666 (2014)

    Article  CAS  Google Scholar 

  34. H. Kockar, E. Ozergin, O. Karaagac, M. Alper, Characterisations of CoFeCu films: influence of Fe concentration. J. Alloys Compd. 586, S326–S330 (2014)

    Article  CAS  Google Scholar 

  35. A. Tekgül, M. Alper, H. Kockar, M. Haciismailoglu, The effect of ferromagnetic and non-ferromagnetic layer thicknesses on the electrodeposited CoFe/Cu multilayers. J. Mater. Sci. Mater. Electron. 26(4), 2411–2417 (2015)

    Article  CAS  Google Scholar 

  36. G. Kresse, J. Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996)

    Article  CAS  Google Scholar 

  37. G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47(1), 558 (1993)

    Article  CAS  Google Scholar 

  38. G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49(20), 14251 (1994)

    Article  CAS  Google Scholar 

  39. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953 (1994)

    Article  Google Scholar 

  40. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46(11), 6671 (1992)

    Article  CAS  Google Scholar 

  41. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Erratum: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 48(7), 4978 (1993)

    Article  CAS  Google Scholar 

  42. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+ U study. Phys. Rev. B 57(3), 1505 (1998)

    Article  CAS  Google Scholar 

  43. M. Liu, Y. Zhang, T. Zou, V.O. Garlea, T. Charlton, Y. Wang, F. Liu, Y. Xie, X. Li, L. Yang, B. Li, Antiferromagnetism of double molybdate LiFe(MoO4)2. Inorg. Chem. 59(12), 8127–8133 (2020)

    Article  CAS  Google Scholar 

  44. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188 (1976)

    Article  Google Scholar 

  45. A.V.D. Lee, M. Beaurain, P. Armand, LiFe(MoO4)2, LiGa(MoO4)2 and Li3Ga(MoO4)3. Acta Crystallogr. C 64(1), i1–i4 (2008)

    Article  CAS  Google Scholar 

  46. N. Hornsveld, B. Put, W.M.M. Kessels, P.M. Vereecken, M. Creatore, Mass spectrometry study of Li2CO3 film growth by thermal and plasma-assisted atomic layer deposition. J. Phys. Chem. C 123(7), 4109–4115 (2019)

    Article  CAS  Google Scholar 

  47. L. Castro, R. Dedryvere, M. El Khalifi, P.E. Lippens, J. Bréger, C. Tessier, D. Gonbeau, The spin-polarized electronic structure of LiFePO4 and FePO4 evidenced by in-lab XPS. J. Phys. Chem. C 114(41), 17995–18000 (2010)

    Article  CAS  Google Scholar 

  48. Z. Cao, B. Wei, High rate capability of hydrogen annealed iron oxide–single walled carbon nanotube hybrid films for lithium-ion batteries. ACS Appl. Mater. Interfaces 5(20), 10246–10252 (2013)

    Article  CAS  Google Scholar 

  49. Z.-Y. Yu, Y. Duan, M.-R. Gao, C.-C. Lang, Y.-R. Zheng, S.-H. Yu, A one-dimensional porous carbon-supported Ni/Mo2C dual catalyst for efficient water splitting. Chem. Sci. 8(2), 968–973 (2017)

    Article  CAS  Google Scholar 

  50. B. Guo, X. Fang, B. Li, Y. Shi, C. Ouyang, Y.-S. Hu, Z. Wang, G.D. Stucky, L. Chen, Synthesis and lithium storage mechanism of ultrafine MoO2 nanorods. Chem. Mater. 24(3), 457–463 (2012)

    Article  CAS  Google Scholar 

  51. J.H. Ku, Y.S. Jung, K.T. Lee, C.H. Kim, S.M. Oh, Thermoelectrochemically activated MoO2 powder electrode for lithium secondary batteries. J. Electrochem. Soc. 156(8), A688 (2009)

    Article  CAS  Google Scholar 

  52. T. Yoon, C. Chae, Y.-K. Sun, X. Zhao, H.H. Kung, J.K. Lee, Bottom-up in situ formation of Fe3O4 nanocrystals in a porous carbon foam for lithium-ion battery anodes. J. Mater. Chem. 21(43), 17325–17330 (2011)

    Article  CAS  Google Scholar 

  53. W. Li, F. Cheng, Z. Tao, J. Chen, Vapor-transportation preparation and reversible lithium intercalation/deintercalation of α-MoO3 microrods. J. Phys. Chem. B 110(1), 119–124 (2006)

    Article  CAS  Google Scholar 

  54. D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, J.S. Gnanaraj, H.J. Kim, Design of electrolyte solutions for Li and Li-ion batteries: a review. Electrochim. Acta 50, 247–254 (2004)

    Article  CAS  Google Scholar 

  55. J. Christensen, J.A. Newman, Mathematical model for the lithium-ion negative electrode solid electrolyte interphase. J. Electrochem. Soc. 151, A1977–A1988 (2004)

    Article  CAS  Google Scholar 

  56. S. Gantenbein, M. Schönleber, M. Weiss, E. Ivers-Tiffee, Capacity fade in lithium-ion batteries and cyclic aging over various state-of-charge ranges. Sustainability 11(23), 6697 (2019)

    Article  CAS  Google Scholar 

  57. G. Zhou, D.-W. Wang, F. Li, L. Zhang, N. Li, Z.-S. Wu, L. Wen, G.Q. Lu, H.-M. Cheng, Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 22(18), 5306–5313 (2010)

    Article  CAS  Google Scholar 

  58. T. Muraliganth, A. Vadivel Murugan, A. Manthiram, Facile synthesis of carbon-decorated single-crystalline Fe3O4 nanowires and their application as high performance anode in lithium ion batteries. Chem. Commun. 47, 7360–7362 (2009)

    Article  CAS  Google Scholar 

  59. L. Liu, M. An, P. Yang, J. Zhang, Superior cycle performance and high reversible capacity of SnO2/graphene composite as an anode material for lithium-ion batteries. Sci. Rep. 5(1), 1–0 (2015)

    Google Scholar 

Download references

Acknowledgements

Dr. Asiya M. Tamboli (Asiya F. Shaikh) acknowledges CSIR, New Delhi for financial support with Award Number 09/882(0008)/2K13-EMR-I. Dr. C. S. Praveen would like to thank DST-India for INSPIRE Faculty Fellowship (Award Number IFA-18 PH217). Dr. C. S. Praveen also acknowledges Dr. Aleix-Comas Vives for his support with the VASP Calculations. Authors are grateful to the Ministry of Electronics and Information Technology (MeitY), New Delhi and Nanocrystalline Material and Glass Laboratory Group, C-MET, Pune. This work was supported by “Human Resources Program in Energy Technology” of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20204010600100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chinho Park or Bharat B. Kale.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1478 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamboli, A.M., Tamboli, M.S., Dwivedi, P.K. et al. Engineering microstructure of LiFe(MoO4)2 as an advanced anode material for rechargeable lithium-ion battery. J Mater Sci: Mater Electron 32, 24273–24284 (2021). https://doi.org/10.1007/s10854-021-06892-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06892-5

Navigation