Skip to main content
Log in

Damping Property of AA6061/SiCp Surface Composites Developed through Friction Stir Processing

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The processing route has an influence on the damping capacity, and in this study, the influence of silicon carbide particle (SiCp) size on the damping capacity of AA6061 processed through friction stir processing was investigated. Specimens were extracted from the stir zone and analyzed for their damping properties, and the same was correlated with the obtained microstructures. The samples were also characterized for the change in dislocation density, plastic zone size, grain boundary area and crystallite size through x-ray diffraction and electron microscopy. The average grain size remarkably reduced after friction stir processing (45 to 5.64 μm) and it further decreased with an increase in reinforcement particle size (9, 29.4 and 109 µm). The damping capacity was measured through dynamic mechanical analyzer from 25 to 300°C and was observed to increase for the samples subjected to friction stir processing and with increasing particle size. It was found that the plastic zone radius around the SiC particle increased with the particle size, and the contribution of plastic zone was found to be significant than the dislocation density for damping below 125°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E.J.L. Jinmin Zhang, Robert J Perej, Catherin R Wong, Effect of Secondary Phases on Damping Behaviour of Metals, Alloys and Metal Matrix Composites, 1996, 16, p 97–159.

  2. E.J. Lavernia, R.J. Perez and J. Zhang, Damping Behavior of Discontinuously Reinforced Ai Alloy Metal-Matrix Composites, Metall. Mater. Trans. A, 1995, 26(11), p 2803–2818.

    Article  Google Scholar 

  3. S. Madeira, O. Carvalho, V.H. Carneiro, D. Soares, F.S. Silva, and G. Miranda, Damping Capacity and Dynamic Modulus of Hot Pressed AlSi Composites Reinforced with Different SiC Particle Sized, Compos. Part B Eng., Elsevier Ltd, 2016, 90, pp. 399–405

  4. S. Madeira, G. Miranda, V.H. Carneiro, D. Soares, F.S. Silva, and O. Carvalho, The Effect of SiCp Size on High Temperature Damping Capacity and Dynamic Young’s Modulus of Hot-pressed AlSi-SiCp MMCs, Mater. Des., Elsevier Ltd, 2016, 93, pp. 409–417, Doi:https://doi.org/10.1016/j.matdes.2015.12.147.

  5. R. Bauri and M.K. Surappa, Damping Behavior of Al-Li-SiCp Composites Processed by Stir Casting Technique, Metall. Mater. Trans. A, 2005, 36(3), p 667–673.

    Article  Google Scholar 

  6. K.-K. Deng, J.-C. Li, K.-b Nie, X.-J. Wang and J.-F. Fan, High Temperature Damping Behaviour of as-deformed Mg Matrix Influenced by Micron and Submicron SiCp, Mater. Sci. Eng. A, 2015, 624, p 62–70.

    Article  CAS  Google Scholar 

  7. V. Sharma, U. Prakash and B.V.M. Kumar, Surface Composites by Friction Stir Processing: A Review, J. Mater. Process. Technol., 2015, 224, p 117–134.

    Article  CAS  Google Scholar 

  8. W.B. Lee, C.Y. Lee, M.K. Kim, J. Il Yoon, Y.J. Kim, Y.M. Yoen and S.B. Jung, Microstructures and Wear Property of Friction Stir Welded AZ91 Mg/SiC Particle Reinforced Composite, Compos. Sci. Technol., 2006, 66(11–12), p 1513–1520.

    Article  CAS  Google Scholar 

  9. A. Devaraju, A. Kumar and B. Kotiveerachari, Influence of Addition of Grp/Al2O3p with SiCp on Wear Properties of Aluminum Alloy 6061–T6 hybrid Composites via Friction Stir Processing, Trans. Nonferrous Met. Soc. China (English Ed., The Nonferrous Metals Society of China, 2013, 23(5), p 1275–1280. https://doi.org/10.1016/S1003-6326(13)62593-5

    Article  CAS  Google Scholar 

  10. A. Hosseinzadeh & G.G. Yapici, High Temperature Characteristics of Al2024/SiC Metal Matrix Composite Fabricated by Friction Stir Processing, Mater. Sci. Eng. A, Elsevier B.V., 2018, 731(June), pp. 487–494, doi:https://doi.org/10.1016/j.msea.2018.06.077.

  11. J. Wang, R. Lu, D. Qin, X. Huang and F. Pan, A Study of the Ultrahigh Damping Capacities in Mg-Mn Alloys, Mater. Sci. Eng. A, 2013, 560, p 667–671.

    Article  CAS  Google Scholar 

  12. J. Wang, S. Li, Z. Wu, H. Wang, S. Gao and F. Pan, Microstructure Evolution, Damping Capacities and Mechanical Properties of Novel Mg-XAl-05Ce (Wt%) Damping Alloys, J. Alloys Compd., 2017, 729, p 545–555.

    Article  CAS  Google Scholar 

  13. J. Wang, Z. Wu, S. Gao, R. Lu, D. Qin, W. Yang, F. Pan, Optimization of Mechanical and Damping Properties of Mg-0.6Zr Alloy by Different Extrusion Processing, J. Magnes. Alloy., Elsevier Ltd, 2015, 3(1), pp. 79–85, doi:https://doi.org/10.1016/j.jma.2015.02.001

  14. K. Venkateswara Reddy, R. Bheekya Naik, G.R. Rao, G. Madhusudhan Reddy, and R. Arockia Kumar, Microstructure and Damping Capacity of AA6061/Graphite Surface Composites Produced through Friction Stir Processing, Compos. Commun., Elsevier Ltd, 2020, 20(April), p. 100352, doi:https://doi.org/10.1016/j.coco.2020.04.018

  15. D.R. Ni, J.J. Wang and Z.Y. Ma, Shape Memory Effect Thermal Expansion and Damping Property of Friction Stir Processed NiTip/Al Composite, J. Mater. Sci. Technol., 2016, 32, p 162–166.

    Article  CAS  Google Scholar 

  16. K. Venkateswara Reddy, R. Bheekya Naik, G. Madhusudhan Reddy, and R. Arockia Kumar, Damping Capacity of Friction Stir Processed Commercial Pure Aluminum Metal, Mater. Today Proc., Elsevier Ltd., 2019, 27, pp. 2061–2065, doi:https://doi.org/10.1016/j.matpr.2019.09.059

  17. W.Y. Gan, Z. Zhou, H. Zhang, and T. Peng, Evolution of Microstructure and Hardness of Aluminum after Friction Stir Processing, Trans. Nonferrous Met. Soc. China (English Ed., 2014, 24(4), pp. 975–981

  18. N. Gangil, A.N. Siddiquee and S. Maheshwari, Aluminum Based in-situ Composite Fabrication Through Friction Stir Processing: A Review, J. Alloys Compd., 2017, 715, p 91–104.

    Article  CAS  Google Scholar 

  19. B.R. Sunil, G.P.K. Reddy, H. Patle and R. Dumpala, Magnesium Based Surface Metal Matrix Composites by Friction Stir Processing, J. Magnes. Alloy., 2016, 4(1), p 52–61.

    Article  CAS  Google Scholar 

  20. R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Reports A Rev. J., 2005, 50, p 1–78.

    Google Scholar 

  21. M. Azizieh, D. Iranparast, M.A.G. Dezfuli, Z. Balak and H.S. Kim, Fabrication of Al/Al2Cu in Situ Nanocomposite via Friction Stir Processing, Trans. Nonferrous Met. Soc. China (English Ed., 2017, 27(4), p 779–788.

    Article  CAS  Google Scholar 

  22. Y. Yang, Y. Zhao, X. Kai and R. Tao, Superplasticity Behavior and Deformation Mechanism of the In-Situ Al3Zr/6063Al Composites Processed by Friction Stir Processing, J. Alloys Compd., 2017, 710, p 225–233.

    Article  CAS  Google Scholar 

  23. R.J. Arsenault and N. Shi, Dislocation Generation Due to Differences between the Coefficients of Thermal Expansion, Mater. Sci. Eng., 1986, 81(C), p 175–187.

    Article  CAS  Google Scholar 

  24. Y.M. Hwang, P.L. Fan and C.H. Lin, Experimental Study on Friction Stir Welding of Copper Metals, J. Mater. Process. Technol., 2010, 210(12), p 1667–1672.

    Article  CAS  Google Scholar 

  25. L. Ke, C. Huang, L. Xing and K. Huang, Al-Ni Intermetallic Composites Produced in Situ by Friction Stir Processing, J. Alloys Compd., 2010, 503(2), p 494–499.

    Article  CAS  Google Scholar 

  26. H.J. Jiang, C.Y. Liu, B. Zhang, P. Xue, Z.Y. Ma, K. Luo, M.Z. Ma and R.P. Liu, Simultaneously Improving Mechanical Properties and Damping Capacity of Al-Mg-Si Alloy through Friction Stir Processing, Mater. Charact., 2017, 131(April), p 425–430.

    Article  CAS  Google Scholar 

  27. J. Osten, B. Milkereit, C. Schick and O. Kessler, Dissolution and Precipitation Behaviour during Continuous Heating of Al-Mg-Si Alloys in a Wide Range of Heating Rates, Materials (Basel), 2015, 8(5), p 2830–2848.

    Article  CAS  Google Scholar 

  28. Y.S. Sato, M. Urata and H. Kokawa, Parameters Controlling Microstructure and Hardness during Friction-Stir Welding of Precipitation-Hardenable Aluminum Alloy 6063, Metall. Mater. Trans. A, 2002, 33(3), p 625–635.

    Article  Google Scholar 

  29. W. Woo, H. Choo, D.W. Brown and Z. Feng, Influence of the Tool Pin and Shoulder on Microstructure and Natural Aging Kinetics in a Friction-Stir-Processed 6061–T6 Aluminum Alloy, Metall. Mater. Trans. A Phys. Metall Mater. Sci., 2007, 38(1), p 69–76.

    Article  Google Scholar 

  30. S. Singh and K. Pal, Influence of Surface Morphology and UFG on Damping and Mechanical Properties of Composite Reinforced with Spinel MgAl2O4-SiC Core-Shell Microcomposites, Mater. Charact., 2017, 123, p 244–255.

    Article  CAS  Google Scholar 

  31. D. Siva, P. Chintada, D.Á. Dma and Á. Rice, Damp. Behav. Metal Matrix Compos., 2015, 68, p 161–167.

    Google Scholar 

  32. G.C. Li, Y. Ma, X.L. He, W. Li and P.Y. Li, Damping Capacity of High Strength-Damping Aluminum Alloys Prepared by Rapid Solidification and Powder Metallurgy Process, Trans. Nonferrous Met. Soc. China (English Ed., 2012, 22(5), p 1112–1117.

    Article  CAS  Google Scholar 

  33. A. Granato and K. Lücke, Theory of Mechanical Damping Due to Dislocations, J. Appl. Phys., 1956, 27(6), p 583–593.

    Article  Google Scholar 

  34. D.S. Prasad and A.R. Krishna, Effect of T6 Heat Treatment on Damping Characteristics of Al/RHA Composites, Bull. Mater. Sci., 2012, 35(6), p 989–995.

    Article  CAS  Google Scholar 

  35. D. Dunand and A. Mortensen, Thermal Mismatch Dislocations Produced by Large Particles in a Strain-Hardening Matrix, Mater. Sci. Eng. A, 1991, 135(C), p 179–184.

    Google Scholar 

  36. P.J. Withers, The Application of the Eshelby Method of Internal Stress Determination to Short, Acta Met., 1989, 37(11), p 3061–3084.

    Article  CAS  Google Scholar 

  37. Y. Suzuki, K. Ueno, K. Murasawa, Y. Kusuda, M. Takamura, T. Hakoyama, T. Hama, and S. Suzuki, Effect of Surface Area of Grain Boundaries on Stress Relaxation Behavior in Pure Copper over Wide Range of Grain Sizes, Mater. Sci. Eng. A, Elsevier B.V., 2020, p. 139585, Doi:https://doi.org/10.1016/j.msea.2020.139585.

  38. J. Weertman, Dislocation Damping at High Temperatures, J. Appl. Phys., 1957, 28(2), p 193–196. https://doi.org/10.1063/1.1722704

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for DST-SERB-ECR for funding this research work through grant ECR/2017/001227.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raju Arockia Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, K.V., Naik, R.B., Reddy, G.M. et al. Damping Property of AA6061/SiCp Surface Composites Developed through Friction Stir Processing. J. of Materi Eng and Perform 31, 75–81 (2022). https://doi.org/10.1007/s11665-021-06201-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06201-5

Keywords

Navigation