Skip to main content
Log in

Structural and Electrical Properties of Spin-Coated LaF3 Thin Film on Porous Silicon

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Rare-earth halides like lanthanum fluoride (LaF3) are an extensively used material for sensors and optical devices. Generally, different sophisticated and expensive techniques have been used for the epitaxial deposition of LaF3 thin film to make heterostructure devices. In a quest of finding a facile technique of depositing LaF3 films, this report presents the deposition of LaF3 thin film on porous silicon substrate by reacting lanthanum chloride (LaCl3) with hydrofluoric acid (HF) directly on spinning porous silicon (PS) substrate. Nearly stoichiometric and polycrystalline LaF3 was confirmed by the energy-dispersive x-ray spectroscopy (EDS) and x-ray diffraction (XRD) analysis, respectively. The crack-free homogeneous morphological structure was confirmed by scanning electron microscopy (SEM). From the capacitance–voltage (C-V) and current–voltage (I-V) characteristics, it was observed that the spin-coated LaF3/PS structure shows capacitive nature as well as diode nature, respectively. From the experimental results, it can be concluded that lanthanum fluorides can be deposited into the pores as well as on the top of PS by the spin-coating technique, which provides the required passivation for PS. This passivation can enable the PS to be considered as an important material for electronic device fabrication.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.B.M. Ismail, K. Furuichi, T. Yoshinobu and H. Iwasaki, Light-Addressable Potentiometric Fluoride (F-) Sensor, Sens. Actuators, B Chem., 2002, 86(1), p 94–97.

    Article  CAS  Google Scholar 

  2. R.C. Sikder, S.S. Mou, A. Rahman and A.B.M. Ismail, Influence of Deposition Rate of LaF3 and Annealing on the Capacitance-Voltage (C–V) Characteristics of LaF3/Si Heterostructures, Sens. Actuators B Chem., 2009, 135(2), p 488–491.

    Article  CAS  Google Scholar 

  3. H. Cho, K. Kim, M. Meyyappan, and C.-K. Baek, LaF3 Electrolyte-Insulator-Semiconductor Sensor for Detecting Fluoride Ions, Sens. Actuators B Chem., Elsevier, 2019, 279(May 2018), p 183–188.

  4. A. Al Mortuza, M. Hafijur Rahman, S.S. Mou, M. Johurul Islam, and A.B.M. Ismail, Electrical and Optical Characteristics of Porous Silicon Impregnated with LaF3 by a Novel Chemical Bath Technique, Curr. Appl. Phys., 2012, 12(2), p 565–569.

  5. H. Zhang, X. Dong, L. Jiang, Y. Yang, X. Cheng, and H. Zhao, Comparative Analysis of Upconversion Emission of LaF3:Er/Yb and LaOF:Er/Yb for Temperature Sensing, J. Mol. Struct., Elsevier B.V, 2020, 1206, p 127665.

  6. L.B. Gulina, M. Weigler, A.F. Privalov, I.A. Kasatkin, P.B. Groszewicz, I.V. Murin, V.P. Tolstoy, and M. Vogel, Morphological and Dynamical Evolution of Lanthanum Fluoride 2D Nanocrystals at Thermal Treatment, Solid State Ionics, Elsevier, 2020, 352(April), p 115354.

  7. J. Wang, Y. Yan, H. Liu, G. Zhang, D. Yue, S. Tong, C. Gao, and Y. Han, Pressure-Induced Ionic to Mixed Ionic and Electronic Conduction Transition in Solid Electrolyte LaF3, Phys. Chem. Chem. Phys., The Royal Society of Chemistry, 2020, 22(45), p 26306–26311.

  8. M. Hafijur Rahman and A.B.M. Ismail, Influence of LaCl3 Concentration and Annealing Temperature on the Diode Ideality Factor of LaF3/Porous-Silicon Structure Prepared by Chemical Bath Deposition Technique, Appl. Nanosci., 2015, 5(6), p 645–649.

  9. M.H. Rahman and A.B.M. Ismail, Dependency of Built-in Potential of LaF3/Porous-Silicon Heterostructure Prepared by Chemical Bath Deposition Technique on the Concentration of LaCl3 and Annealing Temperature, Appl. Nanosci., Springer Berlin Heidelberg, 2015, 5(8), p 921–925.

  10. C. Gréboval, U. Noumbe, N. Goubet, C. Livache, J. Ramade, J. Qu, A. Chu, B. Martinez, Y. Prado, S. Ithurria, A. Ouerghi, H. Aubin, J.-F. Dayen and E. Lhuillier, Field-Effect Transistor and Photo-Transistor of Narrow-Band-Gap Nanocrystal Arrays Using Ionic Glasses, Nano Lett., 2019, 19(6), p 3981–3986.

    Article  Google Scholar 

  11. F. Sarto, E. Nichelatti, D. Flori, M. Vadrucci, A. Santoni, S. Pietrantoni, S. Guenster, D. Ristau, A. Gatto, M. Trovò, M. Danailov and B. Diviacco, Vacuum-Ultraviolet Optical Properties of Ion Beam Assisted Fluoride Coatings for Free Electron Laser Applications, Thin Solid Films, 2007, 515(7–8), p 3858–3866.

    Article  CAS  Google Scholar 

  12. M. Yang, A. Gatto, and N. Kaiser, Highly Reflecting Aluminum-Protected Optical Coatings for the Vacuum-Ultraviolet Spectral Range, Appl. Opt., 2006, 45(1), p 178.

  13. M. Vijayakumar, S. Selvasekarapandian, T. Gnanasekaran, S. Fujihara and S. Koji, Structural and Impedance Studies on LaF3 Thin Films Prepared by Vacuum Evaporation, J. Fluor. Chem., 2004, 125(7), p 1119–1125.

    Article  CAS  Google Scholar 

  14. W. Moritz and L. Müller, Mechanistic Study of Fluoride Ion Sensors, Analyst, 1991, 116(6), p 589–593.

    Article  CAS  Google Scholar 

  15. N. Miura, J. Hisamoto, N. Yamazoe and S. Kuwata, LaF3 Sputtered Film Sensor for Detecting Oxygen at Room Temperature, Appl. Surf. Sci., 1948, 1988(33–34), p 1253–1259.

    Google Scholar 

  16. Kaushalya, S.L. Patel, A. Purohit, S. Chander, and M.S. Dhaka, Thermal Annealing Evolution to Physical Properties of ZnS Thin Films as Buffer Layer for Solar Cell Applications, Phys. E Low-dimensional Syst. Nanostructures, 2018, 101, p 174–177.

  17. S. Chander, A.K. De and M.S. Dhaka, Towards CdZnTe Solar Cells: An Evolution to Post-Treatment Annealing Atmosphere, Sol. Energy, 2018, 174, p 757–761.

    Article  CAS  Google Scholar 

  18. S.L. Patel, Himanshu, A. Purohit, S. Chander, and M.S. Dhaka, Structural and Electrical Properties of Thin CdTe Films with the Application of CdCl2 Activation, AIP Conf. Proc., American Institute of Physics, 2019, 2100(1), p 20003.

  19. S. Chander and M.S. Dhaka, Optimization of Structural, Optical and Electrical Properties of CdZnTe Thin Films with the Application of Thermal Treatment, Mater. Lett., 2016, 182, p 98–101.

    Article  CAS  Google Scholar 

  20. S. Chander and M.S. Dhaka, Time Evolution to CdCl2 Treatment on Cd-Based Solar Cell Devices Fabricated by Vapor Evaporation, Sol. Energy, 2017, 150, p 577–583.

    Article  CAS  Google Scholar 

  21. S. Chander and M.S. Dhaka, Exploration of CdMnTe Thin Film Solar Cells, Sol. Energy, 2019, 183, p 544–550.

    Article  CAS  Google Scholar 

  22. S. Chander and M.S. Dhaka, Enhancement in Microstructural and Optoelectrical Properties of Thermally Evaporated CdTe Films for Solar Cells, Results Phys., 2018, 8, p 1131–1135.

    Article  Google Scholar 

  23. S. Ahmmed, A. Aktar, S. Tabassum, M.H. Rahman, M.F. Rahman, and A.B. Md. Ismail, CuO Based Solar Cell with V2O5 BSF Layer: Theoretical Validation of Experimental Data, Superlattices Microstruct., 2021, 151, p 106830.

  24. S. Ahmmed, A. Aktar and A.B.M. Ismail, Role of a Solution-Processed V2O5 Hole Extracting Layer on the Performance of CuO-ZnO-Based Solar Cells, ACS Omega, Am. Chem. Soc., 2021. https://doi.org/10.1021/acsomega.1c00678

    Article  Google Scholar 

  25. X. Zhang, E. Daran, C. Serrano and F. Lahoz, Up-Conversion Fluorescence in MBE-Grown Nd3+-Doped LaF3/CaF2 Waveguides, J. Lumin., 2000, 87–89, p 1011–1013.

    Article  Google Scholar 

  26. M. Vijayakumar, S. Selvasekarapandian, T. Gnanasekaran, S. Fujihara and S. Koji, Characterization of Oxygen Impurities in Thermally Evaporated LaF3 Thin Films Suitable for Oxygen Sensor, Appl. Surf. Sci., 2004, 222(1–4), p 125–130.

    Article  CAS  Google Scholar 

  27. H. Yu, Y. Shen, Y. Cui, H. Qi, J. Shao and Z. Fan, Characterization of LaF3 Coatings Prepared at Different Temperatures and Rates, Appl. Surf. Sci., 2008, 254(6), p 1783–1788.

    Article  CAS  Google Scholar 

  28. I. Hodgkinson, Q. Hong Wu, M. Arnold, L. De Silva, and R. Blaikie, Bideposited Thin-Film Retardation Plates for Use at Deep UV Wavelengths, Curr. Appl. Phys., 2004, 4(2–4), p 106–107.

  29. C.-C. Lee, M.-C. Liu, M. Kaneko, K. Nakahira, and Y. Takano, Influence of Thermal Annealing and Ultraviolet Light Irradiation on LaF3 Thin Films at 193 Nm, Appl. Opt., 2005, 44(32), p 6921.

  30. K. Iwahori, M. Furuta, Y. Taki, T. Yamamura and A. Tanaka, Optical Properties of Fluoride Thin Films Deposited by RF Magnetron Sputtering, Appl. Opt., 2006, 45(19), p 4598–4602.

    Article  CAS  Google Scholar 

  31. Y. Taki, Film Structure and Optical Constants of Magnetron-Sputtered Fluoride Films for Deep Ultraviolet Lithography, Vacuum, 2004, 74(3–4), p 431–435.

    Article  CAS  Google Scholar 

  32. D. Ristau, S. Günster, S. Bosch, A. Duparré, E. Masetti, J. Ferré-Borrull, G. Kiriakidis, F. Peiró, E. Quesnel, and A. Tikhonravov, Ultraviolet Optical and Microstructural Properties of MgF2 And LaF3 Coatings Deposited by Ion-Beam Sputtering and Boat And electron-Beam Evaporation, Appl. Opt., OSA, 2002, 41(16), p 3196–3204.

  33. A. Kuddus, R. Islam, S. Tabassum and A.B. Abu, Synthesis of Si NPs from River Sand Using the Mechanochemical Process and Its Applications in Metal Oxide Heterojunction Solar Cells, Silicon, 2020, 12(7), p 1723–1733.

    Article  CAS  Google Scholar 

  34. A. Aktar, S. Ahmmed, J. Hossain and A.B.M. Ismail, Solution-Processed Synthesis of Copper Oxide (CuxO) Thin Films for Efficient Photocatalytic Solar Water Splitting, ACS Omega, 2020, 5(39), p 25125–25134.

    Article  CAS  Google Scholar 

  35. M. Shiraishi and M. Inagaki, Chapter 10 - X-Ray Diffraction Methods to Study Crystallite Size and Lattice Constants of Carbon Materials, E. YASUDA, M. INAGAKI, K. KANEKO, M. ENDO, A. OYA, and Y.B.T.-C.A. TANABE, Eds., (Oxford), Elsevier Science, 2003, p 161–173. https://doi.org/10.1016/B978-008044163-4/50010-3.

  36. M.H. Rahman, S. Ahmmed, S. Tabassum, and A.B.M. Ismail, Epitaxial Deposition of LaF3 Thin Films on Si Using Deep Eutectic Solvent Based Facile and Green Chemical Route, AIP Adv., American Institute of Physics, 2021, 11(3), p 35010.

  37. M.H. Rahman and A.B.M. Ismail, Influence of Annealing Temperature on the Chemical-Bath Deposited LaF3 on Porous Silicon, and on the Electrical Properties of LaF3/Porous-Silicon Structure, Pabna Univ. Sci. Technol. Stud., R. Ahuja, Ed., Pabna University of Science and Technology Studies, 2017, 2, p 1.

  38. H. Khatun, S.S. Mou, A. Al Mortuza, and A.B.M. Ismail, Investigation on LaF3/Porous Silicon System for Photonic Application, Chinese Opt. Lett., OSA, 2010, 8(3), p 306–308.

Download references

Acknowledgment

The authors gratefully acknowledge the financial support from Bangabandhu Science and Technology Fellowship Trust, Ministry of Science and Technology, Government of the People’s Republic of Bangladesh.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Md. Hafijur Rahman or Abu Bakar Md. Ismail.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.H., Ahmmed, S. & Ismail, A.B.M. Structural and Electrical Properties of Spin-Coated LaF3 Thin Film on Porous Silicon. J. of Materi Eng and Perform 31, 461–470 (2022). https://doi.org/10.1007/s11665-021-06165-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06165-6

Keywords

Navigation