Skip to main content
Log in

Glutamine synthetase regulation by dexamethasone, RU486, and compound A in astrocytes derived from aged mouse cerebral hemispheres is mediated via glucocorticoid receptor

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Glucocorticoids (GCs) regulate astrocyte function, while glutamine synthetase (GS), an enzyme highly expressed in astrocytes, is one of the most remarkable GCs-induced genes. GCs mediate their effects through their cognate glucocorticoid receptor (GRα and GRβ isoforms); however, the mechanism via which these isoforms regulate GS activity in astrocytes remains unknown. We used dexamethasone (DEX), a classical GRα/GRβ agonist, RU486, which is a specific GRβ ligand, and Compound A, a known “dissociated” ligand, to delineate the mechanism via which GR modulates GS activity. Aged Mouse Cerebral Hemisphere astrocytes were treated with DEX (1 μM), RU486 (1 nM–1 μM) or compound A (10 μM), alone or in combination with DEX. GS activity and expression, GR isoforms (mRNA and protein levels), and GRα subcellular trafficking were measured. DEX increased GS activity in parallel with GRα nuclear translocation. RU486 increased GS activity in absence of GRα nuclear translocation implicating thus a role of GRβ-mediated mechanism compound A had no effect on GS activity implicating a GRα–GRE-mediated mechanism. None of the compounds affected whole-cell GRα protein content. DEX reduced GRα and GRβ mRNA levels, while RU486 increased GRβ gene expression. We provide evidence that GS activity, in astrocytes, is regulated via GRα- and GRβ-mediated pathways with important implications in pathological conditions in which astrocytes are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

U-2Os:

Human bone osteosarcoma epithelial cells

MEF cells:

Mouse embryonic fibroblast cells

IM-9:

Human B-lymphoblastoid cells

COS-1:

Fibroblast-like cell line from monkey kidney tissue

HCT116:

Human colon cancer cell line

FLS:

Fibroblast-like synoviocytes

CEM-C7:

Human T-lymphoblast cell line

BEAS-2B:

Human bronchial epithelial cell line

References

  1. Rose CF, Verkhratsky A, Parpura V (2013) Astrocyte glutamine synthetase: pivotal in health and disease. Biochem Soc Trans 41:1518–1524. https://doi.org/10.1042/BST20130237

    Article  CAS  PubMed  Google Scholar 

  2. Cohen-Salmon M, Slaoui L, Mazaré N, Gilbert A, Oudart M, Alvear-Perez R, Elorza-Vidal X, Chever O, Boulay A-C (2020) Astrocytes in the regulation of cerebrovascular functions. Glia 69:1–25. https://doi.org/10.1002/glia.23924

    Article  Google Scholar 

  3. Kitchen P et al (2020) Targeting aquaporin-4 subcellular localization to treat central nervous system edema. Cell 181:784-799.e19. https://doi.org/10.1016/j.cell.2020.03.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sylvain NJ, Salman MM, Pushie MJ, Hou H, Meher V, Herlo R, Peeling L, Kelly ME (2021) The effects of trifluoperazine on brain edema, aquaporin-4 expression, and metabolic markers during the acute phase of stroke using photothrombotic mouse model. (BBA)—Biomembranes 1863:183573. https://doi.org/10.1016/j.bbamem.2021.183573

    Article  CAS  Google Scholar 

  5. Kimelberg HK (2010) Functions of mature astrocytes: a current view. Neuroscientist 16:79–106. https://doi.org/10.1177/1073858409342593

    Article  CAS  PubMed  Google Scholar 

  6. Verkhratsky A, Parpura V (2010) Recent advances in (patho)physiology of astroglia. Acta Pharmacol Sin 31:1044–1054. https://doi.org/10.1038/aps.2010.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ransohoff RM, Brown MA (2012) Innate immunity in the central nervous system. J Clin Invest 122:1164–1171. https://doi.org/10.1172/JCI58644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hashioka S, Miyaoka T, Wake R, Furuya M, Horiguchi J (2013) Glia: an important target for anti-inflammatory and antidepressant activity. Curr Drug Target 14:1322–1328. https://doi.org/10.2174/13894501113146660214

    Article  CAS  Google Scholar 

  9. Rodriguez-Arellano JJ, Parpura V, Zorec R, Verkhratsky A (2016) Astrocytes in physiological aging and Alzheimer’s disease. Neuroscience 323:170–182. https://doi.org/10.1016/j.neuroscience.2015.01.007

    Article  CAS  PubMed  Google Scholar 

  10. Bellaver B, Souza DG, Souza DO, Quincozes-Santos A (2017) Hippocampal astrocyte cultures from adult and aged rats reproduce changes in glial functionality observed in the aging brain. Mol Neurobiol 54:2969–2985. https://doi.org/10.1007/s12035-016-9880-8

    Article  CAS  PubMed  Google Scholar 

  11. Barres BA (2008) The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60:430–440. https://doi.org/10.1016/j.neuron.2008.10.013

    Article  CAS  PubMed  Google Scholar 

  12. Verkhratsky A, Ho MS, Vardjan N, Zorec R, Parpura V (2019) General pathophysiology of astroglia. Adv Exp Med Biol 1175:149–179. https://doi.org/10.1007/978-981-13-9913-8_7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–221. https://doi.org/10.1016/s0166-2236(98)01349-6

    Article  CAS  PubMed  Google Scholar 

  14. Lewerenz J, Maher P (2015) Chronic glutamate toxicity in neurodegenerative diseases—what is the evidence? Front Neurosci 9:469. https://doi.org/10.3389/fnins.2015.00469

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bordone MP et al (2019) The energetic brain: a review from students to students. J Neurochem 151:139–165. https://doi.org/10.1111/jnc.14829

    Article  CAS  PubMed  Google Scholar 

  16. Hertz L, Bock E, Schousboe A (1978) GFA content, glutamate uptake and activity of glutamate metabolizing enzymes in differentiating mouse astrocytes in primary cultures. Dev Neurosci 1:226–238. https://doi.org/10.1159/000112577

    Article  CAS  Google Scholar 

  17. Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161(2):303–310. https://doi.org/10.1016/0006-8993(79)90071-4

    Article  CAS  PubMed  Google Scholar 

  18. Jayakumar AR, Norenberg MD (2016) Glutamine synthetase: role in neurological disorders. Adv Neurobiol 13:327–350. https://doi.org/10.1007/978-3-319-45096-4_13

    Article  PubMed  Google Scholar 

  19. Choudary PV, Molnar M, Evans SJ, Tomita H, Li JZ, Vawter MP, Myers RM, Bunney WE Jr, Akil H, Watson SJ, Jones EG (2005) Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc Natl Acad Sci USA 102:15653–15658. https://doi.org/10.1073/pnas.0507901102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rajkowska G, Stockmeier CA (2013) Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets 14:1225–1236. https://doi.org/10.2174/13894501113149990156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Virgin CE Jr, Ha TP, Packan DR, Tombaugh GC, Yang SH, Horner HC, Sapolsky RM (1991) Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes: implications for glucocorticoid neurotoxicity. J Neurochem 57:1422–1428. https://doi.org/10.1111/j.1471-4159.1991.tb08309.x

    Article  CAS  PubMed  Google Scholar 

  22. Juurlink BHJ, Schousboe A, Jorgensen OS, Hertz L (1981) Induction by hydrocortisone of glutamine synthetase in mouse primary astrocyte cultures. J Neurochem 36:136–142. https://doi.org/10.1111/j.1471-4159.1981.tb02388.x

    Article  CAS  PubMed  Google Scholar 

  23. Patel AJ, Hunt A (1985) Observations on cell growth and regulation of glutamine synthetase by dexamethasone in primary cultures of forebrain and cerebellar astrocytes. Dev Brain Res 18:175–184. https://doi.org/10.1016/0165-3806(85)90262-7

    Article  CAS  Google Scholar 

  24. Khelil M, Rolland B, Fages C, Tardy M (1990) Glutamine synthetase modulation in astrocyte cultures of different mouse brain areas. Glia 3:75–80. https://doi.org/10.1002/glia.440030110

    Article  CAS  PubMed  Google Scholar 

  25. Arcuri C, Tardy M, Rolland B, Armellini R, Menghini AR, Bocchini V (1995) Glutamine synthetase gene expression in a glioblastoma cell-line of clonal origin: regulation by dexamethasone and dibutyryl cyclic AMP. Neurochem Res 20:1133–1139. https://doi.org/10.1007/BF00995375

    Article  CAS  PubMed  Google Scholar 

  26. Huang TL, O’Banion MK (1998) Interleukin-1β and tumor necrosis factor-α suppress dexamethasone induction of glutamine synthetase in primary mouse astrocytes. J Neurochem 71:1436–1442. https://doi.org/10.1046/j.1471-4159.1998.71041436.x

    Article  CAS  PubMed  Google Scholar 

  27. Kumar S, Holmes S, Scully S, Birren BW, Wilson RH, de Vellis J (1986) The hormonal regulation of gene expression of glial markers: glutamine synthetase and glycerol phosphate dehydrogenase in primary cultures of rat brain and in C6 cell line. J Neurosci Res 16:251–264. https://doi.org/10.1002/jnr.490160122

    Article  CAS  PubMed  Google Scholar 

  28. O’Banion MK, Young DA, Bohn MC (1994) Corticosterone-responsive mRNAs in primary rat astrocytes. Mol Brain Res 22:57–68. https://doi.org/10.1016/0169-328X(94)90032-9

    Article  PubMed  Google Scholar 

  29. Patel AJ, Hunt A, Tahourdin CSM (1983) Regulation of in vivo glutamine synthetase activity by glucocorticoids in the developing rat brain. Dev Brain Res 312:83–91. https://doi.org/10.1016/0165-3806(83)90123-2

    Article  CAS  Google Scholar 

  30. Zhang HY, Young AP (1991) A single upstream glucocorticoid response element juxtaposed to an AP1/ATF/CRE-like site renders the chicken glutamine synthetase gene hormonally inducible in transfected retina. J Biol Chem 266:24332–24338

    Article  CAS  Google Scholar 

  31. Lu NZ, Cidlowski JA (2006) Glucocorticoid receptor isoforms generate transcription activity. Trends Cell Biol 16:301–307. https://doi.org/10.1016/j.tcb.2006.04.005

    Article  CAS  PubMed  Google Scholar 

  32. Kino T, Manoli I, Kelkar S, Wang Y, Su YA, Chrousos G (2009) Glucocorticoid receptor (GR) β has intrinsic, GRα-independent transcriptional activity. Biochem Biophys Res Commun 381:671–675. https://doi.org/10.1111/j.1471-4159.1981.tb02388.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nicolaides NC, Galata Z, Kino T, Chrousos GP, Charmandari E (2010) The human glucocorticoid receptor: molecular basis of biologic function. Steroids 75:1–12. https://doi.org/10.1016/j.steroids.2009.09.002

    Article  CAS  PubMed  Google Scholar 

  34. Nixon M, Andrew R, Chapman KE (2013) It takes two to tango: dimerisation of glucocorticoid receptor and its anti-inflammatory functions. Steroids 78:59–68. https://doi.org/10.1016/j.steroids.2012.09.013

    Article  CAS  PubMed  Google Scholar 

  35. Bamberger CM, Schulte HM, Chrousos GP (1996) Molecular determinants of glucocorticoid receptor function and tissue sensitivity to glucocorticoids. Endocr Rev 17:245–261. https://doi.org/10.1210/edrv-17-3-245

    Article  CAS  PubMed  Google Scholar 

  36. Kassel O, Herrlich P (2007) Crosstalk between the glucocorticoid receptor and other transcription factors: molecular aspects. Mol Cell Endocrinol 275:13–29. https://doi.org/10.1016/j.mce.2007.07.003

    Article  CAS  PubMed  Google Scholar 

  37. Vegiopoulos A, Herzig S (2007) Glucocorticoids, metabolism and metabolic diseases. Mol Cell Endocrinol 275:43–61. https://doi.org/10.1016/j.mce.2007.05.015

    Article  CAS  PubMed  Google Scholar 

  38. Lewis-Tuffin LJ, Jewell CM, Bienstock RJ, Collins JB, Cidlowski JA (2007) Human glucocorticoid receptor β binds RU-486 and is transcriptionally active. Mol Cell Biol 27:2266–2282. https://doi.org/10.1128/MCB.01439-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oakley RH, Cidlowski JA (2011) Cellular processing of the glucocorticoid receptor gene and protein: new mechanisms for generating tissue-specific actions of glucocorticoids. J Biol Chem 286:3177–3318. https://doi.org/10.1074/jbc.R110.179325

    Article  CAS  PubMed  Google Scholar 

  40. Lewis-Tuffin LJ, Cidlowski JA (2006) The physiology of human glucocorticoid receptor beta (hGRbeta) and glucocorticoid resistance. Ann N Y Acad Sci 1069:1–9. https://doi.org/10.1196/annals.1351.001

    Article  CAS  PubMed  Google Scholar 

  41. Oakley RH, Sar M, Cidlowski JA (1996) The human glucocorticoid receptor beta isoform: expression, biochemical properties, and putative function. J Biol Chem 271:9550–9559. https://doi.org/10.1074/jbc.271.16.9550

    Article  CAS  PubMed  Google Scholar 

  42. Marques F, Sousa JC, Cerqueira JJ, Sousa N (2014) Detection of the glucocorticoid receptors in brain protein extracts by SDS-PAGE. Methods Mol Biol 1204:233–242. https://doi.org/10.1007/978-1-4939-1346-6_20

    Article  CAS  PubMed  Google Scholar 

  43. Yin Y, Zhang X, Li Z, Deng L, Jiao G, Zhang B, Xie P, Mu H, Qiao W, Zou J (2013) Glucocorticoid receptor β regulates injury-mediated astrocyte activation and contributes to glioma pathogenesis via modulation of b-catenin/TCF transcriptional activity. Neurobiol Dis 59:165–176. https://doi.org/10.1016/j.nbd.2013.07.013

    Article  CAS  PubMed  Google Scholar 

  44. Hinds TD Jr, Ramakrishnan S, Cash HA, Stechschulte LA, Heinrich G, Naijar SM, Sanchez ER (2010) Discovery of glucocorticoid receptor-β in mice with a role in metabolism. Mol Endocrinol 24:1715–1727. https://doi.org/10.1210/me.2009-0411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fahrner J, Labruyere WT, Gaunitz C, Moorman AFM, Gebhardt R, Lamers WH (1993) Identification and functional characterization of regulatory elements of the glutamine synthetase gene from rat liver. Eur J Biochem 213:1067–1073. https://doi.org/10.1111/j.1432-1033.1993.tb17854.x

    Article  CAS  PubMed  Google Scholar 

  46. Chandrasekhar S, Souba WW, Abcouwer SF (1999) Identification of glucocorticoid-responsive elements that control transcription of rat glutamine synthetase. Am J Physiol 276:L319–L331. https://doi.org/10.1152/ajplung.1999.276.2.L319

    Article  CAS  PubMed  Google Scholar 

  47. Pu HF, Young AP (1990) Glucocorticoid-inducible expression of a glutamine synthetase-CAT-encoding fusion plasmid after transfection of intact chicken retinal explant cultures. Gene 89:259–263. https://doi.org/10.1016/0378-1119(90)90014-I

    Article  CAS  PubMed  Google Scholar 

  48. Vardimon L, Ben-Dror I, Avisar N, Oren A, Shiftan L (1999) Glucocorticoid control of glial gene expression. J Neurobiol 40:513–527. https://doi.org/10.1002/(sici)1097-4695(19990915)40:4%3c513::aid-neu8%3e3.0.co;2-d

    Article  CAS  PubMed  Google Scholar 

  49. Einstein M, Greenlee M, Rouen G, Sitlani A, Santoro J, Wang C, Pandit S, Mazur P, Smalera I, Weaver AP, Zeng YY, Ge L, Kelly T, Paiva T, Geissler W, Mosley RT, Williamson J, Ali A, Balkovec J, Harris G (2004) Selective glucocorticoid receptor nonsteroidal ligands completely antagonize the dexamethasone mediated induction of enzymes involved in gluconeogenesis and glutamine metabolism. J Steroid Biochem Mol Biol 92:345–356. https://doi.org/10.1016/j.jsbmb.2004.10.009

    Article  CAS  PubMed  Google Scholar 

  50. Sundahl N, Bridelance J, Libert C, De Bosscher K, Beck IM (2015) Selective glucocorticoid receptor modulation: new directions with non-steroidal scaffolds. Pharmacol Ther 152:28–41. https://doi.org/10.1016/j.pharmthera.2015.05.001

    Article  CAS  PubMed  Google Scholar 

  51. Unemura K, Kume T, Kondo M, Maeda Y, Izumi Y, Akaike A (2012) Glucocorticoids decrease astrocyte numbers by reducing glucocorticoid receptor expression in vitro and in vivo. J Pharmacol Sci 119:30–39. https://doi.org/10.1254/jphs.12047FP

    Article  CAS  PubMed  Google Scholar 

  52. Lou Y-X, Li J, Wang Z-Z, Xia C-Y, Chen N-H (2018) Glucocorticoid receptor activation induces decrease of hippocampal astrocyte number in rats. Psychopharmacology 235:2529–2540. https://doi.org/10.1007/s00213-018-4936-2

    Article  CAS  PubMed  Google Scholar 

  53. Allaman I, Pellerin L, Magistretti PJ (2004) Glucocorticoids modulate neurotransmitter-induced glycogen metabolism in cultured cortical astrocytes. J Neurochem 88:900–908. https://doi.org/10.1046/j.1471-4159.2003.02235.x

    Article  CAS  PubMed  Google Scholar 

  54. Zhang Y-P, Wang H-Y, Zhang C, Liu B-P, Peng Z-L, Li Y-Y, Liu F-M, Song C (2018) Mifepristone attenuates depression-like changes induced by chronic central administration of interleukin-1β in rats. Behav Brain Res 347:436–445. https://doi.org/10.1016/j.bbr.2018.03.033

    Article  CAS  PubMed  Google Scholar 

  55. Zschocke J, Bayatti N, Clement AM, Witan H, Figiel M, Engele J, Behl C (2005) Differential promotion of glutamate transporter expression and function by glucocorticoids in astrocytes from various brain regions. J Biol Chem 280:34924–34932. https://doi.org/10.1074/jbc.M502581200

    Article  CAS  PubMed  Google Scholar 

  56. De Bosscher K, Berghe WV, Beck IME, Van Molle W, Hennuyer N, Hapgood J, Libert C, Staels B, Louw A, Haegeman G (2005) A fully dissociated compound of plant origin for inflammatory gene repression. Proc Natl Acad Sci USA 102:15827–15832. https://doi.org/10.1073/pnas.0505554102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dewint P, Gossye V, De Bosscher K, Berghe WV, Van Beneden K, Deforce D, Van Calenbergh S, Müller-Ladner U, Vander Cruyssen B, Verbruggen G, Haegeman G, Elewaut D (2008) A plant-derived ligand favoring monomeric glucocorticoid receptor conformation with impaired transactivation potential attenuates collagen-induced arthritis. J Immunol 180:2608–2615. https://doi.org/10.4049/jimmunol.180.4.2608

    Article  CAS  PubMed  Google Scholar 

  58. Wüst S, Tischner D, John M, Tuckermann JP, Menzfeld C, Hanisch U-K, van den Brandt J, Lühder F, Reichardt HM (2009) Therapeutic and adverse effects of a non-steroidal glucocorticoid receptor ligand in a mouse model of multiple sclerosis. PLoS ONE 4:e8282. https://doi.org/10.1371/journal.pone.0008202

    Article  CAS  Google Scholar 

  59. Van Loo G, Sze M, Bougarne N, Praet J, Mc Guire C, Ullrich G, Haegeman G, Prinz M, Beyaert R, De Bosscher K (2010) Antiinflammatory properties of a plant-derived nonsteroidal, dissociated glucocorticoid receptor modulator in experimental autoimmune encephalomyelitis. Mol Endocrinol 24:310–322. https://doi.org/10.1210/me.2009-0236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lesovaya E, Yemelyanov A, Swart AC, Swart P, Haegeman G, Budunova I (2015) Discovery of Compound A: a selective activator of the glucocorticoid receptor with anti-inflammatory and anti-cancer activity. Oncotarget 6:30730–30744. https://doi.org/10.18632/oncotarget.5078

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhang Z, Zhang ZY, Schluesener HJ (2009) Compound A, a plant origin ligand of glucocorticoid receptors, increases regulatory T cells and M2 macrophages to attenuate experimental autoimmune neuritis with reduced side effects. J Immunol 183:3081–3091. https://doi.org/10.4049/jimmunol.0901088

    Article  CAS  PubMed  Google Scholar 

  62. Vernadakis A, Mangoura D, Sakellaridis N, Linderholm S (1984) Glial cells dissociated from newborn and aged mouse. J Neurosci Res 11:253–262. https://doi.org/10.1002/jnr.490110305

    Article  CAS  PubMed  Google Scholar 

  63. Vernadakis A, Fleischer-Lambropoulos H (2000) Cell culture as a model to study cell–cell interactions during development aging and neurodegenerative diseases. Int J Dev Neurosci 18:139–143. https://doi.org/10.1016/S0736-5748(99)00081-7

    Article  CAS  PubMed  Google Scholar 

  64. Vernadakis A, Davies D, Sakellaridis N, Mangoura D (1986) Growth patterns of glial cells dissociated from newborn and aged mouse brain with cell passage. J Neurosci Res 15:79–85. https://doi.org/10.1002/jnr.490150108

    Article  CAS  PubMed  Google Scholar 

  65. Lee K, Kentroti S, Billie H, Bruce C, Vernadakis A (1992) Comparative biochemical, morphological and immunocytochemical studies between C-6 glial cells of early and late passages and advanced passages of glial cells derived from aged mouse cerebral hemispheres. Glia 6:245–257. https://doi.org/10.1002/glia.440060402

    Article  CAS  PubMed  Google Scholar 

  66. Holbrook NJ, Grasso RJ, Hackney JF (1981) Glucocorticoid receptor properties and glucocorticoid regulation of glutamine synthetase activity in sensitive C6 and resistant C6H glial cells. J Neurosci Res 6(1):75–88. https://doi.org/10.1002/jnr.490060108

    Article  CAS  PubMed  Google Scholar 

  67. Berl S (1966) Glutamine synthetase. Determination of its distribution in brain development. Biochemistry 5:916–922. https://doi.org/10.1021/bi00867a016

    Article  CAS  PubMed  Google Scholar 

  68. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  69. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  Google Scholar 

  70. Xie J, Nair A, Hermiston TW (2008) A comparative study examining the cytotoxicity of inducible gene expression system ligands in different cell types. Toxicol In Vitro 22:261–266. https://doi.org/10.1016/j.jviromet.2008.07.005

    Article  CAS  PubMed  Google Scholar 

  71. Max SR (1990) Glucocorticoid-mediated induction of glutamine synthetase in skeletal muscle. Med Sci Sports Exerc 22:325–330

    Article  CAS  Google Scholar 

  72. Sarantos P, Howard D, Souba WW (1993) Dexamethasone regulates glutamine synthetase expression in rat lung. Metabolism 42:795–800. https://doi.org/10.1016/0026-0495(93)90252-J

    Article  CAS  PubMed  Google Scholar 

  73. Feng B, Hilt DC, Max SR (1990) Transcriptional regulation of glutamine synthetase gene expression by dexamethasone in L6 muscle cells. J Biol Chem 265:18702–18706

    Article  CAS  Google Scholar 

  74. Patel AJ, Hunt A, Faraji-Shadan F (1986) Effect of removal of glutamine and addition of dexamethasone on the activities of glutamine synthetase, ornithine decarboxylase and lactate dehydrogenase in primary cultures of forebrain and cerebellar astrocytes. Brain Res 391:229–238. https://doi.org/10.1016/0165-3806(86)90287-7

    Article  CAS  PubMed  Google Scholar 

  75. Max SR, Mill J, Mearow K, Konagaya M, Konagaya Y, Thomas JW, Banner C, Vitković L (1988) Dexamethasone regulates glutamine synthetase expression in rat skeletal muscles. Am J Physiol 255:E397–E402. https://doi.org/10.1152/ajpendo.1988.255.3.E397

    Article  CAS  PubMed  Google Scholar 

  76. Labow BI, Souba WW, Abcouwer SF (1999) Glutamine synthetase expression in muscle is regulated by transcriptional and posttranscriptional mechanisms. Am J Physiol 276:E1136–E1145. https://doi.org/10.1152/ajpendo.1999.276.6.E1136

    Article  CAS  PubMed  Google Scholar 

  77. Moutsatsou P, Kazazoglou T, Fleischer-Lambropoulos H, Psarra AMG, Tsiapara A, Sekeris CE, Stefanis C, Vernadakis A (2000) Expression of the glucocorticoid receptor in early and late passage C-6 glioma cells and in normal astrocytes derived from aged mouse cerebral hemispheres. Int J Dev Neurosci 18:329–335. https://doi.org/10.1016/S0736-5748(99)00102-1

    Article  CAS  PubMed  Google Scholar 

  78. Vielkind U, Walencewicz A, Levine JM, Bohn MC (1990) Type II glucocorticoid receptors are expressed in oligodendrocytes and astrocytes. J Neurosci Res 27:360–373. https://doi.org/10.1002/jnr.490270315

    Article  CAS  PubMed  Google Scholar 

  79. Dong Y, Poellinger L, Gustafsson J-A, Okret S (1988) Regulation of glucocorticoid receptor expression: evidence for transcriptional and posttranscriptional mechanisms. Mol Endocrinol 2:1256–1264. https://doi.org/10.1210/mend-2-12-1256

    Article  CAS  PubMed  Google Scholar 

  80. Hoeck W, Rusconi S, Groner B (1989) Down-regulation and phosphorylation of glucocorticoid receptors in cultured cells: investigations with a monospecific antiserum against a bacterially expressed receptor fragment. J Biol Chem 264:14396–14402

    Article  CAS  Google Scholar 

  81. Freeman AI, Munn HL, Lyons V, Dammermann A, Seckl JR, Chapman KE, (2004) Glucocorticoid down-regulation of rat glucocorticoid receptor does not involve differential promoter regulation. J Endocrinol 183:365–374. https://doi.org/10.1677/joe.1.05773

    Article  CAS  PubMed  Google Scholar 

  82. Ramamoorthy S, Cidlowski JA (2013) Ligand-induced repression of the glucocorticoid receptor gene is mediated by an NCoR1 repression complex formed by long-range chromatin interactions with intragenic glucocorticoid response elements. Mol Cell Biol 33:1711–1722. https://doi.org/10.1128/MCB.01151-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ramdas J, Liu W, Harmon JM (1999) Glucocorticoid-induced cell death requires autoinduction of glucocorticoid receptor expression in human leukemic T cells. Cancer Res 59:1378–1385

    CAS  PubMed  Google Scholar 

  84. Pedersen KB, Vedeckis WV (2003) Quantification and glucocorticoid regulation of glucocorticoid receptor transcripts in two human leukemic cell lines. Biochemistry 42:10978–10990. https://doi.org/10.1021/bi034651u

    Article  CAS  PubMed  Google Scholar 

  85. Pujols L, Mullol J, Pérez M, Roca-Ferrer J, Juan M, Xaubet A, Cidlowski JA, Picado C (2001) Expression of the human glucocorticoid receptor alpha and beta isoforms in human respiratory epithelial cells and their regulation by dexamethasone. Am J Respir Cell Mol Biol 24:49–57. https://doi.org/10.1165/ajrcmb.24.1.4024

    Article  CAS  PubMed  Google Scholar 

  86. Max SR, Thomas JW, Banner C, Vitkovic L, Konagaya M, Konagaya Y (1987) Glucocorticoid receptor-mediated induction of glutamine synthetase in skeletal muscle cells in vitro. Endocrinology 120:1179–1183. https://doi.org/10.1210/endo-120-3-1179

    Article  CAS  PubMed  Google Scholar 

  87. Carter BS, Meng F, Thompson RC (2012) Glucocorticoid treatment of astrocytes results in temporally dynamic transcriptome regulation and astrocyte-enriched mRNA changes in vitro. Physiol Genomics 44:1188–1200. https://doi.org/10.1152/physiolgenomics.00097.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rajpert EJ, Lemaigre FP, Eliard PH, Place M, Lafontaine DA, Economidis IV, Belayew A, Martial JA, Rousseau GG (1987) Glucocorticoid receptors bound to the antagonist RU486 are not downregulated despite their capacity to interact in vitro with defined gene regions. J Steroid Biochem 26:513–520. https://doi.org/10.1016/0022-4731(87)90001-X

    Article  CAS  PubMed  Google Scholar 

  89. Alarid ET (2006) Lives and times of nuclear receptors. Mol Endocrinol 20:1972–1981. https://doi.org/10.1210/me.2005-0481

    Article  CAS  PubMed  Google Scholar 

  90. Robertson S, Allie-Reid F, Berghe WV, Visser K, Binder A, Africander D, Vismer M, De Bosscher K, Hapgood J, Haegeman G, Louw A (2010) Abrogation of glucocorticoid receptor dimerization correlates with dissociated glucocorticoid behavior of compound A. J Biol Chem 285:8061–8075. https://doi.org/10.1074/jbc.M109.087866

    Article  CAS  PubMed  Google Scholar 

  91. Wilkinson L, Verhoog N, Louw A (2018) Novel role for receptor dimerization in post-translational processing and turnover of the GRα. Sci Rep 8:14266. https://doi.org/10.1038/s41598-018-32440-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Desmet SJ, Bougarne N, Van Moortel L, De Cauwer L, Thommis J, Vuylsteke M, Ratman D, Houtman R, Tavernier J, De Bosscher K (2017) Compound A influences gene regulation of the dexamethasone-activated glucocorticoid receptor by alternative cofactor recruitment. Sci Rep 7:8063. https://doi.org/10.1038/s41598-017-07941-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gossye V, Elewaut T, Van Beneden K, Dewint P, Haegeman G, De Bosscher K (2010) A plant-derived glucocorticoid receptor modulator attenuates inflammation without provoking ligand-induced resistance. Ann Rheum Dis 69:291–296. https://doi.org/10.1136/ard.2008.102871

    Article  CAS  PubMed  Google Scholar 

  94. Centeno EGZ, Cimarosti H, Bithell A (2018) 2D versus 3D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling. Mol Neurodegener 13(1):27. https://doi.org/10.1186/s13024-018-0258-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ader M, Tanaka EM (2014) Modeling human development in 3D culture. Curr Opin Cell Biol 31:23–28. https://doi.org/10.1016/j.ceb.2014.06.013

    Article  CAS  PubMed  Google Scholar 

  96. DeBattista C, Belanoff J (2006) The use of mifepristone in the treatment of neuropsychiatric disorders. Trends Endocrinol Metab 17:117–121. https://doi.org/10.1016/j.tem.2006.02.006

    Article  CAS  PubMed  Google Scholar 

  97. Block T, Petrides G, Kushner H, Kalin N, Nelson C, Belanoff J, Schatzberg A (2018) Combined analysis of mifepristone for psychotic depression: plasma levels associated with clinical response. Biol Psychiatry 84:46–54. https://doi.org/10.1097/JCP.0000000000000744

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the University Mental Health, Neurosciences and Precision Medicine Research Institute “Costas Stefanis” (UMHRI) and the Medical School, National and Kapodistrian University of Athens, University General Hospital “ATTIKON.”

Author information

Authors and Affiliations

Authors

Contributions

PM and TK contributed to the study concept and design. Material preparation, data collection, and analysis were performed by TK. Experiments were performed by TK, CP, CM, IK, and AP. Statistical analysis was carried out by CP. The first draft was written by TK. Writing and Review was performed by PM. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Paraskevi Moutsatsou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 kb)

Supplementary file2 (PPTX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazazoglou, T., Panagiotou, C., Mihailidou, C. et al. Glutamine synthetase regulation by dexamethasone, RU486, and compound A in astrocytes derived from aged mouse cerebral hemispheres is mediated via glucocorticoid receptor. Mol Cell Biochem 476, 4471–4485 (2021). https://doi.org/10.1007/s11010-021-04236-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04236-9

Keywords

Navigation