Skip to main content

Advertisement

Log in

Utility of machine learning algorithms in degenerative cervical and lumbar spine disease: a systematic review

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Machine learning is a rapidly evolving field that offers physicians an innovative and comprehensive mechanism to examine various aspects of patient data. Cervical and lumbar degenerative spine disorders are commonly age-related disease processes that can utilize machine learning to improve patient outcomes with careful patient selection and intervention. The aim of this study is to examine the current applications of machine learning in cervical and lumbar degenerative spine disease. A systematic review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A search of PubMed, Embase, Medline, and Cochrane was conducted through May 31st, 2020, using the following terms: “artificial intelligence” OR “machine learning” AND “neurosurgery” AND “spine.” Studies were included if original research on machine learning was utilized in patient care for degenerative spine disease, including radiographic machine learning applications. Studies focusing on robotic applications in neurosurgery, navigation, or stereotactic radiosurgery were excluded. The literature search identified 296 papers, with 35 articles meeting inclusion criteria. There were nine studies involving cervical degenerative spine disease and 26 studies on lumbar degenerative spine disease. The majority of studies for both cervical and lumbar spines utilized machine learning for the prediction of postoperative outcomes, with 5 (55.6%) and 15 (61.5%) studies, respectively. Machine learning applications focusing on degenerative lumbar spine greatly outnumber the current volume of cervical spine studies. The current research in lumbar spine also demonstrates more advanced clinical applications of radiographic, diagnostic, and predictive machine learning models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Ames CP, Smith JS, Pellisé F, Kelly M, Gum JL, Alanay A, Acaroğlu E, Pérez-Grueso FJS, Kleinstück FS, Obeid I, Vila-Casademunt A, Shaffrey CI Jr, Burton DC, Lafage V, Schwab FJ, Shaffrey CI Sr, Bess S, Serra-Burriel M (2019) Development of predictive models for all individual questions of SRS-22R after adult spinal deformity surgery: a step toward individualized medicine. Eur Spine J 28:1998–2011. https://doi.org/10.1007/s00586-019-06079-x

    Article  PubMed  Google Scholar 

  2. Ames CP, Smith JS, Pellisé F, Kelly M, Alanay A, Acaroğlu E, Pérez-Grueso FJS, Kleinstück F, Obeid I, Vila-Casademunt A, Shaffrey CI Jr, Burton D, Lafage V, Schwab F, Shaffrey CI Sr, Bess S, Serra-Burriel M (2019) Artificial intelligence based hierarchical clustering of patient types and intervention categories in adult spinal deformity surgery: towards a new classification scheme that predicts quality and value. Spine (Phila Pa 1976) 44:915–926. https://doi.org/10.1097/brs.0000000000002974

    Article  Google Scholar 

  3. Arvind V, Kim JS, Oermann EK, Kaji D, Cho SK (2018) Predicting surgical complications in adult patients undergoing anterior cervical discectomy and fusion using machine learning. Neurospine 15:329–337. https://doi.org/10.14245/ns.1836248.124

    Article  PubMed  PubMed Central  Google Scholar 

  4. Azimi P, Benzel EC, Shahzadi S, Azhari S, Mohammadi HR (2014) Use of artificial neural networks to predict surgical satisfaction in patients with lumbar spinal canal stenosis: clinical article. J Neurosurg Spine 20:300–305. https://doi.org/10.3171/2013.12.Spine13674

    Article  PubMed  Google Scholar 

  5. Choy G, Khalilzadeh O, Michalski M, Do S, Samir AE, Pianykh OS, Geis JR, Pandharipande PV, Brink JA, Dreyer KJ (2018) Current applications and future impact of machine learning in radiology. Radiology 288:318–328. https://doi.org/10.1148/radiol.2018171820

    Article  PubMed  Google Scholar 

  6. Conforti I, Mileti I, Del Prete Z, Palermo E (2020) Measuring biomechanical risk in lifting load tasks through wearable system and machine-learning approach. Sensors (Basel) 20(6):1557. https://doi.org/10.3390/s20061557

    Article  Google Scholar 

  7. Courtemanche MJ, Fortin M, Fehlings MG, Weber M, Sparrey CJ (2017) Objective quantitative assessment of cervical spondylotic myelopathy severity using preoperative MRI and machine learning. J Orthop Res Conf 35(suppl. 1)

  8. Daenzer S, Freitag S, Von Sachsen S, Steinke H, Groll M, Meixensberger J, Leimert M (2014) VolHOG: a volumetric object recognition approach based on bivariate histograms of oriented gradients for vertebra detection in cervical spine MRI. Med Phys 41

  9. Fatima N, Zheng H, Massaad E, Hadzipasic M, Shankar GM, Shin JH (2020) Development and validation of machine learning algorithms for predicting adverse events following surgery for lumbar degenerative spondylolisthesis. World Neurosurg  25:S1878–S8750

  10. Galbusera F, Bassani T, Costa F, Brayda-Bruno M, Zerbi A, Wilke HJ (2016) Artificial neural networks for the recognition of vertebral landmarks in the lumbar spine. Comput Methods Biomech Biomed Eng Imaging Vis 6:447–452

    Article  Google Scholar 

  11. Galbusera F, Bassani T, Casaroli G, Gitto S, Zanchetta E, Costa F, Sconfienza LM (2018) Generative models: an upcoming innovation in musculoskeletal radiology? A preliminary test in spine imaging. Eur Radiol Exp 2:29. https://doi.org/10.1186/s41747-018-0060-7

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gaonkar B, Xia Y, Villaroman DS, Ko A, Attiah M, Beckett JS, Macyszyn L (2017) Multi-parameter ensemble learning for automated vertebral body segmentation in heterogeneously acquired clinical MR images. IEEE J Transl Eng Health Med 5:1800412

    Article  PubMed  Google Scholar 

  13. Gaonkar B, Villaroman D, Beckett J, Ahn C, Attiah M, Babayan D, Villablanca JP, Salamon N, Bui A, MacYszyn L (2019a) Quantitative analysis of spinal canal areas in the lumbar spine: an imaging informatics and machine learning study. Am J Neuroradiol 40:1586–1591

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gaonkar B, Beckett J, Villaroman D, Ahn C, Edwards M, Moran S, Attiah M, Babayan D, Ames C, Villablanca JP, Salamon N, Bui A, Macyszyn L (2019b) Quantitative analysis of neural foramina in the lumbar spine: an imaging informatics and machine learning study. Radiol Artif Intell 1(2):180037

    Article  PubMed  PubMed Central  Google Scholar 

  15. Goyal A, Ngufor C, Kerezoudis P, McCutcheon B, Storlie C, Bydon M (2019) Can machine learning algorithms accurately predict discharge to nonhome facility and early unplanned readmissions following spinal fusion? Analysis of a national surgical registry. J Neurosurg Spine 31:568–578

    Article  Google Scholar 

  16. GRADEpro Guideline Development Tool (2015) GRADEpro Guideline Development Tool. McMaster University Evidence Prime Inc, Hamilton

    Google Scholar 

  17. Gros C, De Leener B, Dupont SM, Martin AR, Fehlings MG, Bakshi R, Tummala S, Auclair V, McLaren DG, Callot V, Cohen-Adad J, Sdika M (2018) Automatic spinal cord localization, robust to MRI contrasts using global curve optimization. Med Image Anal 44:215–227

    Article  PubMed  Google Scholar 

  18. Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, Norris S, Falck-Ytter Y, Glasziou P, DeBeer H, Jaeschke R, Rind D, Meerpohl J, Dahm P, Schunemann HJ (2011) GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol 64:383–394. https://doi.org/10.1016/j.jclinepi.2010.04.026

    Article  PubMed  Google Scholar 

  19. Guyatt GH, Oxman AD, Vist G, Kunz R, Brozek J, Alonso-Coello P, Montori V, Akl EA, Djulbegovic B, Falck-Ytter Y, Norris SL, Williams JW Jr, Atkins D, Meerpohl J, Schunemann HJ (2011) GRADE guidelines: 4. Rating the quality of evidence–study limitations (risk of bias). J Clin Epidemiol 64:407–415. https://doi.org/10.1016/j.jclinepi.2010.07.017

    Article  PubMed  Google Scholar 

  20. Hoffman H, Lee SI, Garst JH, Lu DS, Li CH, Nagasawa DT, Ghalehsari N, Jahanforouz N, Razaghy M, Espinal M, Ghavamrezaii A, Paak BH, Wu I, Sarrafzadeh M, Lu DC (2015) Use of multivariate linear regression and support vector regression to predict functional outcome after surgery for cervical spondylotic myelopathy. J Clin Neurosci 22:1444–1449. https://doi.org/10.1016/j.jocn.2015.04.002

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hopkins BS, Yamaguchi JT, Garcia R, Kesavabhotla K, Weiss H, Hsu WK, Smith ZA, Dahdaleh NS (2019) Using machine learning to predict 30-day readmissions after posterior lumbar fusion: an NSQIP study involving 23,264 patients. J Neurosurg Spine:1–8. https://doi.org/10.3171/2019.9.SPINE19860

  22. Hopkins BS, Weber KA 2nd, Kesavabhotla K, Paliwal M, Cantrell DR, Smith ZA (2019) Machine learning for the prediction of cervical spondylotic myelopathy: a post hoc pilot study of 28 participants. World Neurosurg 127:e436–e442

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts H (2018) Artificial intelligence in radiology. Nat Rev Cancer 18(8):500–510. https://doi.org/10.1038/s41568-018-0016-5

  24. Huang KT, Silva MA, See AP, Wu KC, Gallerani T, Zaidi HA, Lu Y, Chi JH, Groff MW, Arnaout OM (2019) A computer vision approach to identifying the manufacturer and model of anterior cervical spinal hardware. J Neurosurg Spine 31:844–850

    Article  Google Scholar 

  25. Kalagara S, Eltorai AEM, Durand WM, DePasse JM, Daniels AH (2018) Machine learning modeling for predicting hospital readmission following lumbar laminectomy. J Neurosurg Spine 30:344–352. https://doi.org/10.3171/2018.8.Spine1869

    Article  PubMed  Google Scholar 

  26. Karhade AV, Ogink P, Thio Q, Broekman M, Cha T, Gormley WB, Hershman S, Peul WC, Bono CM, Schwab JH (2018) Development of machine learning algorithms for prediction of discharge disposition after elective inpatient surgery for lumbar degenerative disc disorders. Neurosurg Focus 45:E6

    Article  PubMed  Google Scholar 

  27. Karhade AV, Ogink PT, Thio QCBS, Cha TD, Gormley WB, Hershman SH, Smith TR, Mao J, Schoenfeld AJ, Bono CM, Schwab JH (2019) Development of machine learning algorithms for prediction of prolonged opioid prescription after surgery for lumbar disc herniation. Spine Journal 19:1764–1771

    Article  Google Scholar 

  28. Khan O, Badhiwala JH, Witiw CD, Wilson JR, Fehlings MG (2020) Machine learning algorithms for prediction of health-related quality-of-life after surgery for mild degenerative cervical myelopathy. Spine J S1529-9430(20):30047–4

    Google Scholar 

  29. Kim JS, Arvind V, Oermann EK, Kaji D, Ranson W, Ukogu C, Hussain AK, Caridi J, Cho SK (2018) Predicting surgical complications in patients undergoing elective adult spinal deformity procedures using machine learning. Spine deformity 6:762–770

    Article  PubMed  Google Scholar 

  30. Kim JS, Merrill RK, Arvind V, Kaji D, Pasik SD, Nwachukwu CC, Vargas L, Osman NS, Oermann EK, Caridi JM, Cho SK (2018) Examining the ability of artificial neural networks machine learning models to accurately predict complications following posterior lumbar spine fusion. Spine 43:853–860

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lee SI, Huang A, Mortazavi B, Li C, Hoffman HA, Garst J, Lu DS, Getachew R, Espinal M, Razaghy M, Ghalehsari N, Paak BH, Ghavam AA, Afridi M, Ostowari A, Ghasemzadeh H, Lu DC, Sarrafzadeh M (2016) Quantitative assessment of hand motor function in cervical spinal disorder patients using target tracking tests. J Rehabil Res Dev 53:1007–1022. https://doi.org/10.1682/jrrd.2014.12.0319

    Article  PubMed  Google Scholar 

  32. Lee SI, Park E, Huang A, Mortazavi B, Garst JH, Jahanforouz N, Espinal M, Siero T, Pollack S, Afridi M, Daneshvar M, Ghias S, Lu DC, Sarrafzadeh M (2016) Objectively quantifying walking ability in degenerative spinal disorder patients using sensor equipped smart shoes. Med Eng Phys 38:442–449. https://doi.org/10.1016/j.medengphy.2016.02.004

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lee JH, Han IH, Kim DH, Yu S, Lee IS, Song YS, Joo S, Jin CB, Kim H (2020) Spine computed tomography to magnetic resonance image synthesis using generative adversarial networks : a preliminary study. J Korean Neurosurg Soc 63:386–396. https://doi.org/10.3340/jkns.2019.0084

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700. https://doi.org/10.1136/bmj.b2700

    Article  PubMed  PubMed Central  Google Scholar 

  35. Merali ZG, Witiw CD, Badhiwala JH, Wilson JR, Fehlings MG (2019) Using a machine learning approach to predict outcome after surgery for degenerative cervical myelopathy. PLoS One 14(4):e0215133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nam KH, Seo I, Kim DH, Lee JI, Choi BK, Han IH (2019) Machine learning model to predict osteoporotic spine with hounsfield units on lumbar computed tomography. Journal of Korean Neurosurgical Society 62:442–449

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shamim MS, Enam SA, Qidwai U (2009) Fuzzy Logic in neurosurgery: predicting poor outcomes after lumbar disk surgery in 501 consecutive patients. Surg Neurol 72:565–572. https://doi.org/10.1016/j.surneu.2009.07.012 (discussion 572)

    Article  PubMed  Google Scholar 

  38. Sharif Bidabadi S, Murray I, Lee GYF, Morris S, Tan T (2019) Classification of foot drop gait characteristic due to lumbar radiculopathy using machine learning algorithms. Gait Posture 71:234–240. https://doi.org/10.1016/j.gaitpost.2019.05.010

    Article  PubMed  Google Scholar 

  39. Staartjes VE, de Wispelaere MP, Vandertop WP, Schröder ML (2019) Deep learning-based preoperative predictive analytics for patient-reported outcomes following lumbar discectomy: feasibility of center-specific modeling. Spine J 19:853–861. https://doi.org/10.1016/j.spinee.2018.11.009

    Article  PubMed  Google Scholar 

  40. Staartjes VE, Quddusi A, Klukowska AM, Schröder ML (2020) Initial classification of low back and leg pain based on objective functional testing: a pilot study of machine learning applied to diagnostics. Eur Spine J. https://doi.org/10.1007/s00586-020-06343-5

    Article  PubMed  Google Scholar 

  41. Stopa BM, Robertson FC, Karhade AV, Chua M, Broekman MLD, Schwab JH, Smith TR, Gormley WB (2019) Predicting nonroutine discharge after elective spine surgery: external validation of machine learning algorithms. J Neurosurg Spine 26:1–6

  42. Wolff RF, Moons KGM, Riley RD, Whiting PF, Westwood M, Collins GS, Reitsma JB, Kleijnen J, Mallett S, Groupdagger P (2019) PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med 170:51–58. https://doi.org/10.7326/M18-1376

    Article  PubMed  Google Scholar 

  43. Zemp R, Tanadini M, Pluss S, Schnuriger K, Singh NB, Taylor WR, Lorenzetti S (2016) Application of machine learning approaches for classifying sitting posture based on force and acceleration sensors. Biomed Res Int 2016:5978489. https://doi.org/10.1155/2016/5978489

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhang Y, Fatemi P, Medress Z, Azad TD, Veeravagu A, Desai A, Ratliff JK (2020) A predictive-modeling based screening tool for prolonged opioid use after surgical management of low back and lower extremity pain. Spine J. https://doi.org/10.1016/j.spinee.2020.05.098

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZAS conceived and designed the idea. MES, CMO, and AMW performed the literature review and analyzed the findings. Findings were discussed among MES, CMO, AMW, DMM, and ZAS. AHF contributed information regarding machine learning. FYM critically revised and edited the manuscript. All authors contributed to writing and approving the final manuscript.

Corresponding author

Correspondence to Zachary A. Smith.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 72 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stephens, M.E., O’Neal, C.M., Westrup, A.M. et al. Utility of machine learning algorithms in degenerative cervical and lumbar spine disease: a systematic review. Neurosurg Rev 45, 965–978 (2022). https://doi.org/10.1007/s10143-021-01624-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-021-01624-z

Keywords

Navigation