Skip to main content

Advertisement

Log in

Geographic information system–based approach and statistical modeling for assessing nitrate distribution in the Mitidja aquifer, Northern Algeria

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

A Correction to this article was published on 17 November 2021

This article has been updated

Abstract

The Mitidja alluvial aquifer in northern Algeria is an important drinking, industrial, and agricultural water source. Unfortunately, nitrate contamination has led to a decrease in water quality in several areas that benefit from this source. This study employed geographic information system and statistical modeling methods to evaluate the origin, evolution, and spatiotemporal distribution of groundwater nitrate in the aquifer and investigate the influence of different hydrogeological parameters on its extent. Control points were established across various regions of the Mitidja groundwater aquifer. A total of 1185 nitrate concentrations were measured at 316 sampling points between June 1985 and May 2015. The results showed variable rates, with the 50 mg/L nitrate consumption limit exceeded in 423 samples at 84 observation points. Statistical modeling showed that nitrate concentration was related to groundwater characteristics (aquifer nature, water table depth, and thickness of saturated zone) and human activities (land use, agricultural practices, and population density). Analysis of the nitrate distribution showed that the eastern and western watersheds experienced the greatest contamination. The significant nitrate concentrations in the eastern area were correlated with urban contamination, including uncontrolled urbanization, high population density, and industrial activity, while the primary origin of nitrate in the western area was correlated with agricultural activity, particularly fertilizers. The findings of this study can aid local government and water agencies in the development and implementation of regulations to help mitigate increases in nitrate concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The dataset used during the current study are available from the corresponding author on reasonable request.

Change history

Abbreviations

ABH:

Agency of Hydrographical Basins

ANRH:

Agence Nationale des Ressources Hydrauliques (National Water Resources Agency)

DEA:

Direction d’Environnement d’Alger (Environmental Direction of Algiers)

DEAH:

Direction des Études et Aménagement Hydrauliques (Directorate of Hydraulic Studies and Facilities)

DEMRH:

Direction des Études de Milieu et de la Recherche Hydraulique (Direction of Environmental Studies and Hydraulic Research)

GIS:

Geographic information system

GPI:

Grand Périmètre Irrigué (Large irrigated perimeter)

INSID:

Institut National du Sol, Irrigation et du Drainage (National Institute for Soil, Irrigation and Drainage)

MADR:

Ministère d’Agriculture et de Développement Rural (Agricultural and Rural Development Ministry)

MCL:

Maximum concentration level (mg/L)

ONID:

Office National d’Irrigation et Drainage (National Office of Irrigation and Drainage)

SEAAL:

Société des Eaux et d’Assainissement d’Alger (Algiers Water and Sanitation Company)

UAS:

Useful agricultural surface

References

  • ABH. (2004). Cadastre Hydraulique, Document de synthèse, Bassin Côtier-Algérois. Algeria.

  • Aksever, F., Davraz, A., & Karagüzel, R. (2015). Relations of hydrogeologic factors and temporal variations of nitrate contents in groundwater. Sandıklı Basin, Turkey Environmental Earth Sciences, 73, 2179–2196. https://doi.org/10.1007/s12665-014-3569-y

    Article  CAS  Google Scholar 

  • Alabdula’aly, A. I., Al-Rehaili, A. M., Al-Zarah, A. I., Khan, M. A. (2010).Alabdula’aly, A. I., Al-Rehaili, A. M., Al-Zarah, A. I., & Khan, M. A. (2010). Assessment of nitrate concentration in groundwater in Saudi Arabia. Environmental monitoring and assessment161(1), 1-9. https://doi.org/10.1007/s10661-008-0722-7

  • Almasri, M. N., & Kaluarachchi, J. J. (2004). Assessment and Management of Long-Term Nitrate Pollution of Ground Water in Agriculture-Dominated Watersheds Journal of Hydrology, 295, 225–245.

    CAS  Google Scholar 

  • Almasri, M. N., Kaluarachchi, J. J., Aral, M. M., & Taylor, S. W. (2011). Groundwater quality: fate and transport of contaminants. Groundwater Management Technical Committee of the Groundwater Council of EWRI Environmental and Water Resources Institute (EWRI) of the American Society of Civil Engineers, 36. https://doi.org/10.1061/9780784411766.ch03

  • Altman, S. J., & Parizek, R. R. (1995). Dilution of Nonpoint-Source Nitrate in Groundwater Journal of Environmental Quality, 24, 707–718. https://doi.org/10.2134/jeq1995.00472425002400040023x

    Article  CAS  Google Scholar 

  • Anayah, F. M., & Almasri, M. N. (2009). Trends and occurrences of nitrate in the groundwater of the West Bank. Palestine Applied Geography, 29, 588–601.

    Article  Google Scholar 

  • Anderson, M. P., & Woessner, W. W. (1992). Applied groundwater modeling: Simulation of flow and advective transport. Academic Press.

    Google Scholar 

  • ANRH. (1996). Note relative à l'étude sur modèle mathématique du système Mitidja. ANRH, Algiers, Algeria.

  • ANRH. (2013). Note sur l’évolution de la piézométrie de la nappe de la Mitidja. ANRAH, Blida, Algeria.

  • Arauzo, M., & Martínez-Bastida, J. J. (2015). Environmental factors affecting diffuse nitrate pollution in the major aquifers of central Spain: groundwater vulnerability vs. groundwater pollution. Environmental earth sciences73(12), 8271-8286. https://doi.org/10.1007/s12665-014-3989-8

  • Arauzo, M., Valladolid, M., & Martínez-Bastida, J. J. (2011). Spatio-temporal dynamics of nitrogen in river-alluvial aquifer systems affected by diffuse pollution from agricultural sources: Implications for the implementation of the Nitrates Directive. Journal of Hydrology, 411, 155–168. https://doi.org/10.1016/j.jhydrol.2011.10.004

    Article  CAS  Google Scholar 

  • Ariouat, M. (1992). Distribution des nitrates dans la nappe de la Mitidja et programe d'engrais. Engineering thesis, National Agronomic Institute.

  • Ayadi, R., Trabelsi, R., Zouari, K., Saibi, H., Itoi, R., & Khanfir, H. (2018). Hydrogeological and hydrochemical investigation of groundwater using environmental isotopes (18O, 2H, 3H, 14C) and chemical tracers: A case study of the intermediate aquifer. Sfax, Southeastern Tunisia Hydrogeology Journal, 26, 983–1007. https://doi.org/10.1007/s10040-017-1702-1

    Article  CAS  Google Scholar 

  • Bahri, F., & Saibi, H. (2010). Characterisation, classification, and evaluation of some groundwater samples in the Mostaganem area of northwestern Algeria. Arabian Journal of Geosciences3(1), 79-89. https://doi.org/10.1007/s12517-009-0062-0

  • Benlecheheb, W. (2010). Impacts de l'urbanisation, l'agriculture et l'industrie sur la qualité des eaux de Mitidja orientale (Doctoral dissertation, Alger).

  • Benlecheheb, M. W., & Bouzid-Lagha, S. (2014). Approche cartographique de l’étude de la pollution des eaux de la nappe alluviale de la Mitidja orientale (Algérie). Techniques Sciences Méthodes, (9), 20-30. https://doi.org/10.1051/tsm/2014-0902-0

  • Benouniche, M. (2007). Identification des pratiques de la fertilisation azotée et diagnostic de la pollution nitrique des eaux dans la Mitidja Ouest. Engineering thesis, National Agronomic Institute.

  • BOUDI, M. (2005). Vulgarisation agricole et pratiques des agrumiculteurs de la Mitidja (Doctoral dissertation, INA).

  • Boumans, L. J., Fraters, D., & Van Drecht, G. (2005). Nitrate leaching in agriculture to upper groundwater in the sandy regions of the Netherlands during the 1992–1995 period. Environmental Monitoring and Assessment102(1), 225-241.https://doi.org/10.1007/s10661-005-6023-5

  • Burkart, M. R., & Kolpin, D. W. (1993). Hydrologic and Land-Use Factors Associated with Herbicides and Nitrate in near-Surface Aquifers Journal of Environmental Quality, 22, 646–656. https://doi.org/10.2134/jeq1993.00472425002200040002x.

    Article  CAS  Google Scholar 

  • Burow, K. R., Jurgens, B. C., Belitz, K., & Dubrovsky, N. M. (2013). Assessment of regional change in nitrate concentrations in groundwater in the Central Valley, California, USA, 1950s–2000s. Environmental earth sciences69(8), 2609-2621.https://doi.org/10.1007/s12665-012-2082-4

  • Burow, K. R., Nolan, B. T., Rupert, M. G., Dubrovsky, N. M. (2010). Nitrate in Groundwater of the United States, 1991−2003. Environmental science & technology, 44:4988–4997. https://doi.org/10.1021/es100546y

  • Calvi, C., Dapeña, C., & Martinez, D. E. (2020). Factors That Affect the Spatial and Temporal Distribution of Nitrate in a Free Aquifer of an Agricultural Plain Basin Environmental Earth Sciences, 79, 472. https://doi.org/10.1007/s12665-020-09161-6

    Article  CAS  Google Scholar 

  • Carrera, J., & Mathias, S. A. (2010). Groundwater flow and transport. Groundwater Modeling in Arid and Semi-Arid Areas, Wheater HS, Mathias SA, Li X (eds). Cambridge University Press, London, UK, 39-62. https://doi.org/10.1017/cbo9780511760280.005

  • Cellone, F., Carol, E., Pugliese, I., Córdoba, J., Butler, L., & Lamarche, L. (2020). Nitrate pollution in dairy farms and its impact on groundwater quality in a sector of the Pampas plain. Argentina Environmental Earth Sciences, 79, 258. https://doi.org/10.1007/s12665-020-09005-3

    Article  CAS  Google Scholar 

  • Cheong, J. -Y., Hamm, S. -Y., Lee, J. -H., Lee, K. -S., & Woo, N. -C. (2012). Groundwater nitrate contamination and risk assessment in an agricultural area. South Korea Environmental Earth Sciences, 66, 1127–1136. https://doi.org/10.1007/s12665-011-1320-5

    Article  CAS  Google Scholar 

  • Chilonda, P., & Otte, J. (2006). Indicators to monitor trends in livestock production at national, regional and international levels. Livestock Research for Rural Development18(8), 117. https://www.lrrd.org/lrrd18/8/chil18117.htm

  • Chitsazan, M., Tabari, M. M. R., & Eilbeigi, M. (2017). Analysis of temporal and spatial variations in groundwater nitrate and development of its pollution plume: a case study in Karaj aquifer. Environmental Earth Sciences76(11), 1-27. https://doi.org/10.1007/s12665-017-6677-7

  • Chowdary, V. M., Rao, N. H., & Sarma, P. B. S. (2005). Decision support framework for assessment of non-point-source pollution of groundwater in large irrigation projects. Agricultural Water Management, 75, 194–225. https://doi.org/10.1016/j.agwat.2004.12.013

    Article  Google Scholar 

  • Corpen. (1999). Flux d’azote, de phosphore et de potassium associés aux vaches laitières et à leur système fourrager.

  • Darwishe, H., El Khattabi, J., Chaaban, F., Louche, B., Masson, E., & Carlier, E. (2017). Prediction and control of nitrate concentrations in groundwater by implementing a model based on GIS and artificial neural networks (ANN). Environmental earth sciences,76(19), 1-14. https://doi.org/10.1007/s12665-017-6990-1

  • DEAH, ANRH, SOGREAH. (2013). Gestion intégrée des ressources en eau dans le bassin hydrographique Côtier Algérois O2A. Algeria.

  • Debernardi, L., De Luca, D. A., & Lasagna, M. (2008). Correlation between nitrate concentration in groundwater and parameters affecting aquifer intrinsic vulnerability. Environmental Geology, 55, 539–558. https://doi.org/10.1007/s00254-007-1006-1

    Article  CAS  Google Scholar 

  • Delleur, J. W. (2016). Elementary groundwater flow and transport processes. In J. H. Cushman & D. M. Tartakovsky (Eds.), The Handbook of Groundwater Engineering (pp. 73–102). CRC Press.

    Google Scholar 

  • DEMRH. (1973). Carte et notice hydrogéologique de la région d'Alger. Algeria.

  • DeSimone, L. A., & Howes, B. L. (1998). Nitrogen transport and transformations in a shallow aquifer receiving wastewater discharge: A mass balance approach. Water Resources Research, 34, 271–285. https://doi.org/10.1029/97WR03040

    Article  CAS  Google Scholar 

  • Ducci, D., Della Morte, R., Mottola, A., Onorati, G., & Pugliano, G. (2020). Evaluating upward trends in groundwater nitrate concentrations: an example in an alluvial plain of the Campania region (Southern Italy). Environmental Earth Sciences79(13), 1-10.https://doi.org/10.1007/s12665-020-09062-8

  • Engel, B. A., Jang, W. S., Lim, K. J., Navulur, K. C., & Theller, L. (2016). The role of geographical information systems in groundwater engineering. In J. H. Cushman & D. M. Tartakovsky (Eds.), The Handbook of Groundwater Engineering (pp. 951–971). CRC Press.

    Google Scholar 

  • Erisman, J. W. (2013). Consequences of human modification of the global nitrogen cycle. Philosophical Transactions of the Royal Society B: Biological Sciences368(1621), 20130116. https://doi.org/10.1098/rstb.2013.0116

  • Esmaeili, A., Moore, F., & Keshavarzi, B. (2014). Nitrate contamination in irrigation groundwater. Isfahan, Iran Environmental Earth Sciences, 72, 2511–2522. https://doi.org/10.1007/s12665-014-3159-z

    Article  CAS  Google Scholar 

  • Fan, A. M. (2011). Nitrate and Nitrite in Drinking Water: A Toxicological Review. In: Nriagu JO (ed) Encyclopedia of Environmental Health. Elsevier, Burlington, pp 137–145. https://doi.org/10.1016/B978-0-444-52272-6.00563-8

  • Fan, A. M. (2019). Health, exposure and regulatory implications of nitrate and nitrite in drinking water☆. In: Nriagu J (ed) Encyclopedia of Environmental Health (Second Edition). Elsevier, Oxford, pp 417–435. https://doi.org/10.1016/B978-0-12-409548-9.11837-8

  • FAO. (2003). Compendium of Agricultural – Environmental Indicators.

  • Fetter, C. W., Boving, T., & Kreamer, D. (2017). Contaminant hydrogeology. Waveland Press.

    Google Scholar 

  • GeoHydraulique. (1971). Etude hydrogéologique quantitative de la pleine de la Mitidja.

  • Goodchild, M. F., Parks, B. O., & Steyaert, L. T. (1993). Environmental modeling with GIS. Oxford University Press.

    Google Scholar 

  • Grech, V., Calleja, N. (2018). WASP (Write a Scientific Paper): parametric vs. non-parametric tests Early Human Development 123:48–49. https://doi.org/10.1016/j.earlhumdev.2018.04.014

  • Hadjoudj, O. (2008). Pollution des nappes aquifères de la Mitidja par les nitrates. Doctoral thesis, University of Algiers, Algiers, Algeria.

  • Hadjoudj, O., Bensemmane, R., Saoud, Z., & Reggabi, M. (2014). Pollution Des Eaux Souterraines De La Mitidja Par Les Nitrates: État Des Lieux Et Mesures Correctives European Journal of Water Quality, 45, 57–68. https://doi.org/10.1051/wqual/20140010

    Article  Google Scholar 

  • Helsel, D. R., & Hirsch, R. M. (1992). Statistical methods in water resources (Vol. 49). Elsevier.

    Book  Google Scholar 

  • Hudak, P. F. (1999). Chloride and nitrate distributions in the Hickory aquifer. Central Texas, USA Environment International, 25, 393–401. https://doi.org/10.1016/S0160-4120(99)00016-1

    Article  CAS  Google Scholar 

  • Hudak, P. F. (2000). Regional trends in nitrate content of Texas groundwater. Journal of Hydrology, 228, 37–47. https://doi.org/10.1016/S0022-1694(99)00206-1

    Article  CAS  Google Scholar 

  • Hudak, P. F., & Sanmanee, S. (2003). Spatial Patterns of Nitrate, Chloride, Sulfate, and Fluoride Concentrations in the Woodbine Aquifer of North-Central Texas. Environmental Monitoring and Assessment, 82, 311–320. https://doi.org/10.1023/a:1021946402095

    Article  CAS  Google Scholar 

  • Imache, A., Hartani, T., Bouarfa, S., Kuper, M. (2011). La Mitidja vingt ans après: Réalités agricoles aux portes d’Alger. Éditions Alpha, Algérie.

  • INSID. (2011). Carte d'occupation du sol des Wilaya d'Alger, Blida, Boumerdes et Tipaza.

  • Jones, C. S., Kim, S. W., Wilton, T. F., Schilling, K. E., & Davis, C. A. (2018). Nitrate uptake in an agricultural stream estimated from high-frequency, in-situ sensors. Environmental monitoring and assessment190(4), 1-16.https://doi.org/10.1007/s10661-018-6599-1

  • Kennedy, M. D. (2013). Introducing geographic information systems with ARCGIS: A workbook approach to learning GIS. John Wiley & Sons.

    Google Scholar 

  • Khouli, M. R., & Djabri, L. (2011). Impact of use of agricultural inputs on the quality of groundwater case of Mitidja plain (Algeria). Geographia Technica11(2), 35-44.

  • Ki, M. G., Koh, D. C., Yoon, H., & Kim, H. S. (2015). Temporal variability of nitrate concentration in groundwater affected by intensive agricultural activities in a rural area of Hongseong, South Korea. Environmental Earth Sciences74(7), 6147-6161. https://doi.org/10.1007/s12665-015-4637-7

    Article  CAS  Google Scholar 

  • Kim, K. H., Yun, S. T., Choi, B. Y., Chae, G. T., Joo, Y., Kim, K., & Kim, H. S. (2009). Hydrochemical and multivariate statistical interpretations of spatial controls of nitrate concentrations in a shallow alluvial aquifer around oxbow lakes (Osong area, central Korea). Journal of contaminant hydrology107(3-4), 114-127.https://doi.org/10.1016/j.jconhyd.2009.04.007

  • Korom, S. F. (1992). Natural denitrification in the saturated zone: A review. Water Resources Research, 28, 1657–1668. https://doi.org/10.1029/92WR00252

    Article  CAS  Google Scholar 

  • Laftouhi, N. E., Vanclooster, M., Jalal, M., Witam, O., Aboufirassi, M., Bahir, M., & Persoons, É. (2003). Groundwater nitrate pollution in the Essaouira Basin (Morocco). Comptes Rendus Geoscience,335(3), 307-317. https://doi.org/10.1016/S1631-0713(03)00025-7

  • Larbi, A. (2012). Utilisation d’un SIG et d’un model mathématique pour la gestion intégrée des ressources en eau à l’échelle du bassin côtier algérois 02a. University of Science and Technology Houari Boumediene, Algiers, Algeria.

    Google Scholar 

  • Lasagna, M., De Luca, D. A., Debernardi, L., & Clemente, P. (2013). Effect of the Dilution Process on the Attenuation of Contaminants in Aquifers Environmental Earth Sciences, 70, 2767–2784. https://doi.org/10.1007/s12665-013-2336-9

    Article  Google Scholar 

  • Lasagna, M., De Luca, D. A., & Franchino, E. (2016). Nitrate contamination of groundwater in the western Po Plain (Italy): the effects of groundwater and surface water interactions. Environmental Earth Sciences75(3), 240. https://doi.org/10.1007/s12665-015-5039-6

  • Lasagna, M., De Luca, D. A., & Franchino, E. (2018). Intrinsic groundwater vulnerability assessment: issues, comparison of different methodologies and correlation with nitrate concentrations in NW Italy. Environmental earth sciences77(7), 1-16.https://doi.org/10.1007/s12665-018-7452-0

  • Lee, S. M., Min, K. D., Woo, N. C., Kim, Y. J., & Ahn, C. H. (2003). Statistical models for the assessment of nitrate contamination in urban groundwater using GIS. Environmental Geology, 44, 210–221. https://doi.org/10.1007/s00254-002-0747-0

    Article  CAS  Google Scholar 

  • Levallois, P., et al. (1998). Groundwater contamination by nitrates associated with intensive potato culture in Québec. Science of the Total Environment, 217, 91–101. https://doi.org/10.1016/S0048-9697(98)00191-0

    Article  CAS  Google Scholar 

  • Li, S. -L., Liu, C. -Q., Lang, Y. -C., Zhao, Z. -Q., & Zhou, Z. -H. (2010). Tracing the sources of nitrate in karstic groundwater in Zunyi. Southwest China: A Combined Nitrogen Isotope and Water Chemistry Approach Environmental Earth Sciences, 60, 1415–1423. https://doi.org/10.1007/s12665-009-0277-0

    Article  CAS  Google Scholar 

  • Li, X., Li, J., Xi, B., Yuan, Z., Zhu, X., & Zhang, X. (2015). Effects of groundwater level variations on the nitrate content of groundwater: A case study in Luoyang area. China Environmental Earth Sciences, 74, 3969–3983. https://doi.org/10.1007/s12665-015-4016-4

    Article  CAS  Google Scholar 

  • Longley, P. A., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (2005). Geographic information systems and science. John Wiley & Sons.

    Google Scholar 

  • Martínez, D., Moschione, E., Bocanegra, E., Glok Galli, M., & Aravena, R. (2014). Distribution and origin of nitrate in groundwater in an urban and suburban aquifer in Mar del Plata. Argentina Environmental Earth Sciences, 72, 1877–1886. https://doi.org/10.1007/s12665-014-3096-x

    Article  CAS  Google Scholar 

  • McAleer, E. B., Coxon, C. E., Richards, K. G., Jahangir, M. M. R., Grant, J., & Mellander, P. E. (2017). Groundwater nitrate reduction versus dissolved gas production: A tale of two catchments. Science of the Total Environment, 586, 372–389. https://doi.org/10.1016/j.scitotenv.2016.11.083

    Article  CAS  Google Scholar 

  • Menció, A., et al. (2016). Nitrate pollution of groundwater; all right…, but nothing else? Science of the Total Environment, 539, 241–251. https://doi.org/10.1016/j.scitotenv.2015.08.151

    Article  CAS  Google Scholar 

  • Messaoud Nacer, N. (1987). Hydrogéologie et pollution des eaux: exemple du bassin versant du Mazafran, Mitidja (Algérie). Doctoral thesis, Université Joseph Fourier, Grenoble, France.

  • Mimouni, O., Chibane, B. (1989). Predicting nitrate pollution of Mitidja plain groundwater (Northern Algiers - Algeria) Environmental Software 4:136–141. https://doi.org/10.1016/0266-9838(89)90044-0

  • Mimouni, O., & Mesbah, M. (2010). Les eaux de la région d’Alger. University of Science and Technology Houari Boumediene.

    Google Scholar 

  • Nas, B., & Berktay, A. (2006). Groundwater contamination by nitrates in the city of Konya,(Turkey): A GIS perspective. Journal of Environmental management79(1), 30-37. https://doi.org/10.1016/j.jenvman.2005.05.010

  • ONID. (2014). Carte des grands périmètres irriguées de la Mitidja (Map of the large irrigated perimeters of Mitidja). Algiers, Algeria.

  • RGPH. (1987). Recensement général de la population et de l’Habitat de l'Algérie. ONS (Office Nationale de Statistiques), Algeria.

  • RGPH. (1998). Recensement général de la population et de l’Habitat de l'Algérie. ONS (Office Nationale de Statistiques), Algeria.

  • RGPH. (2008). Recensement général de la population et de l’Habitat de l'Algérie. ONS (Office Nationale de Statistiques), Algeria.

  • Rina, K., Datta, P. S., Singh, C. K., & Mukherjee, S. (2014). Determining the genetic origin of nitrate contamination in aquifers of Northern Gujarat. India Environmental Earth Sciences, 71, 1711–1719. https://doi.org/10.1007/s12665-013-2575-9

    Article  CAS  Google Scholar 

  • Rivett, M. O., Buss, S. R., Morgan, P., Smith, J. W. N., & Bemment, C. D. (2008). Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Water Research, 42, 4215–4232. https://doi.org/10.1016/j.watres.2008.07.020

    Article  CAS  Google Scholar 

  • Rock, G., & Kupfersberger, H. (2019). Modeling Shallow Groundwater Nitrate Concentrations by Direct Coupling of the Vadose and the Saturated Zone Environmental Earth Sciences, 78, 283. https://doi.org/10.1007/s12665-019-8288-y

    Article  CAS  Google Scholar 

  • Rodriguez-Galiano, V. F., Luque-Espinar, J. A., Chica-Olmo, M., & Mendes, M. P. (2018). Feature selection approaches for predictive modelling of groundwater nitrate pollution: An evaluation of filters, embedded and wrapper methods. Science of the total environment624, 661-672. https://doi.org/10.1016/j.scitotenv.2017.12.152

  • Samantara, M. K., Padhi, R. K., Satpathy, K. K., Sowmya, M., & Kumaran, P. (2015). Groundwater nitrate contamination and use of Cl/Br ratio for source appointment. Environmental Monitoring and Assessment, 187, 50. https://doi.org/10.1007/s10661-014-4211-x

    Article  CAS  Google Scholar 

  • SEAAL. (2008). Modélisation du Système Aquifère de la Mitidja. SEAAL, Algeria.

  • SEAAL. (2011). Actualisation du Schéma Directeur d'Assainissement de la Wilaya d'Alger. Algiers, Algeria.

  • Seitzinger, S., et al. (2006). Denitrification across landscapes and waterscapes: A synthesis. Ecological Applications,16, 2064–2090. https://doi.org/10.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2.

    Article  CAS  Google Scholar 

  • Selek, Z., & Yetis, A. D. (2017). Assessment of nitrate contamination in a transnational groundwater basin: A case study in the Ceylanpinar Plain. Turkey Environmental Earth Sciences, 76, 698. https://doi.org/10.1007/s12665-017-7044-4

    Article  CAS  Google Scholar 

  • Semar, A., Saibi, H., & Medjerab, A. (2013). Contribution of Multivariate Statistical Techniques in the Hydrochemical Evaluation of Groundwater from the Ouargla Phreatic Aquifer in Algeria Arabian Journal of Geosciences, 6, 3427–3436.

    CAS  Google Scholar 

  • Sheskin, D. J. (2011). Handbook of parametric and nonparametric statistical procedures. 5th Edition edn. CRC Press, Boca Raton. https://doi.org/10.1201/9780429186196

  • Sidi Moussa, M., Latrech, D. (2006). Les phénomènes de pollution des eaux souterraines de la nappe de la Mitidja. ANRH, Algiers, Algeria.

  • Sir M Mcdonalds & Partners Ltd, Atkins international Ltd WS, BENDER. (1992). Etude de l'Aminagement Agricole de La Plaine de la Mitidja, "Rssources en eau souterraine". ONID, Algeria.

  • SOGREAH. (2009). Etude de Modélisation de Système Aquifère de la Plaine de La Mitidja. ANRH, Algeria.

  • Soomro, F., Rafique, T., Michalski, G., Azhar Ali, S., Naseem, S., & Khan, M. U. (2017). Occurrence and delineation of high nitrate contamination in the groundwater of Mithi sub-district, Thar Desert. Pakistan Environmental Earth Sciences, 76, 355. https://doi.org/10.1007/s12665-017-6663-0

    Article  CAS  Google Scholar 

  • Spalding, R. F., Exner, M. E. (1993). Occurrence of Nitrate in Groundwater—A Review Journal of environmental quality, 22:392–402. https://doi.org/10.2134/jeq1993.00472425002200030002x

  • Stamatis, G., Parpodis, K., Filintas, Α., & Zagana, Ε. (2011). Groundwater quality, nitrate pollution and irrigation environmental management in the Neogene sediments of an agricultural region in central Thessaly (Greece). Environmental Earth Sciences64(4), 1081-1105. https://doi.org/10.1007/s12665-011-0926-y

  • Tedd, K. M., Coxon, C. E., Misstear, B. D. R., Daly, D., Craig, M., Mannix, A., & Williams, N. H. H. (2014). An integrated pressure and pathway approach to the spatial analysis of groundwater nitrate: A case study from the southeast of Ireland. Science of the Total Environment, 476–477, 460–476. https://doi.org/10.1016/j.scitotenv.2013.12.085

    Article  CAS  Google Scholar 

  • Thangarajan, M. (Ed.). (2007). Groundwater: Resource evaluation, augmentation, contamination, restoration, modeling and management. Springer Science & Business Media. https://doi.org/10.1007/978-1-4020-5729-8_11

  • Tukey, J. W. (1977). Exploratory Data Analysis. Addison-Wesley Publishing Company.

    Google Scholar 

  • Vickers, A. J. (2005). Parametric versus non-parametric statistics in the analysis of randomized trials with non-normally distributed data. BMC Medical Research Methodology, 5, 35. https://doi.org/10.1186/1471-2288-5-35

    Article  Google Scholar 

  • Vinten, A. J. A., & Dunn, S. M. (2001). Assessing the effects of land use on temporal change in well water quality in a designated nitrate vulnerable zone. Science of the Total Environment, 265, 253–268. https://doi.org/10.1016/S0048-9697(00)00662-8

    Article  CAS  Google Scholar 

  • Vystavna, Y., Diadin, D., Yakovlev, V., Hejzlar, J., Vadillo, I., Huneau, F., & Lehmann, M. F. (2017). Nitrate contamination in a shallow urban aquifer in East Ukraine: evidence from hydrochemical, stable isotopes of nitrate and land use analysis. Environmental Earth Sciences76(13), 1-13.https://doi.org/10.1007/s12665-017-6796-1

  • Wang, L., Ye, M., Fernando Rios, J., Fernandes, R., Lee, P. Z., & Hicks, R. W. (2013). Estimation of Nitrate Load from Septic Systems to Surface Water Bodies Using an ArcGIS-Based Software Environmental Earth Sciences, 70, 1911–1926. https://doi.org/10.1007/s12665-013-2283-5

    Article  CAS  Google Scholar 

  • Ward, M. H., DeKok, T. M., Levallois, P., Brender, J., Gulis, G., Nolan, B. T., & VanDerslice, J. (2005). Workgroup report: drinking-water nitrate and health—recent findings and research needs. Environmental health perspectives113(11), 1607-1614.

  • Ward, M. H., et al. (2018). Drinking Water Nitrate and Human Health: An Updated Review International Journal of Environmental Research and Public Health, 15, 1557.

    Google Scholar 

  • WHO. (2004). Guidelines for drinking-water quality 1 3 World Health Organization.

  • WHO. (2016). Nitrate and nitrite in Drinking-water Background document for development of WHO. Guidelines for Drinking-water Quality World Health Organization, Geneva, Switzerland.

  • Wick, K., Heumesser, C., & Schmid, E. (2012). Groundwater nitrate contamination: Factors and indicators Journal of. Environmental Management, 111, 178–186. https://doi.org/10.1016/j.jenvman.2012.06.030

    Article  CAS  Google Scholar 

  • Xi, S., Liu, G., Zhou, C., Wu, L., & Liu, R. (2015). Assessment of the sources of nitrate in the Chaohu Lake. China, Using a Nitrogen and Oxygen Isotopic Approach Environmental Earth Sciences, 74, 1647–1655. https://doi.org/10.1007/s12665-015-4170-8

    Article  CAS  Google Scholar 

  • Zhang, Y., Li, F., Zhang, Q., Li, J., & Liu, Q. (2014). Tracing Nitrate Pollution Sources and Transformation in Surface- and Ground-Waters Using Environmental Isotopes Science of the Total Environment, 490, 213–222. https://doi.org/10.1016/j.scitotenv.2014.05.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank El Hadi BEZINI and Ahmed BELAOUNI from the Biological Department of Djelfa University for their feeding support on statistical modeling. We also thank Rabah Talabolma from the National Office of Irrigation and Drainage (ONID) and Omar Adel Lagoun, engineer in geography, for their support for GIS modeling and mapping. Data used in this paper were collected by many departments. We would therefore like to thank the following: Larbi Arzeki from Water and Sanitation Society of Algiers (SEAAL); Mohamed Djeni and Bahia Bellahcen from Agricultural Service Direction of Blida and Algiers; Ouardi and Ahmed Merhoune from Water Resources Direction of Algiers and Blida; Belaidi and Farida Khemissi from National Water Resources Agency of Blida (ANRH); Myassa Stof, Mohamed Kessira, Omar Tizerarine, and Arbi Kiousse from Agricultural and Rural Development Ministry (MADR); Moussa Yaalaoui and Fadeli from Water Resources Ministry (MRE); and Zahida and Djamel Zareb from National Institute for Soil, Irrigation and Drainage (INSID).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mansour LAGOUN.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1. Kolmogorov–Smirnov’s normality test and Mann–Whitney U test to examine the effects of aquifer nature (unconfined and confined) on groundwater nitrate concentration

Aquifer nature

Sampling points

Samples

Kolmogorov–Smirnov’s normality test

Mann–Whitney U test

p value

Decision

p value

Mean (mg/L)

Unconfined

235

1037

 < 0.0001

Non-Normal

 < 0.0001

40,28b

Confined

81

148

 < 0.0001

Non-Normal

24,18a

Appendix 2. Kruskal–Wallis test to examine the effects of saturated zone thickness (0–20 m, 20–120 m, and 120–140 m) on groundwater nitrate concentration. A post hoc Conover-Iman test with Bonferroni correction was used to determine the significance level (p = 0.0167). Significant differences (p ≤ 0.0167) indicated by different letters

Saturated zone class (m)

Samples

Kolmogorov–Smirnov’s normality test

Kruskal–Wallis’s test

Conover-Iman’s test

p value

Distribution

p value

Average rank (mg/L)

Groups

0–20

51

0.4060

Normal

 < 0.0001

334,03

c

20–120

304

0.0092

Non-normal

222,29

b

120–236

89

0.0552

Non-normal

159,31

a

Appendix 3. Kruskal–Wallis test to examine the effects of water table depth (< 5 m, 5–30 m, and > 30 m) on groundwater nitrate concentration. A post hoc Conover-Iman’s test with Bonferroni correction was used to determine the significance level (p = 0.0167). Significant differences (p ≤ 0.0167) indicated by different letters

Water tables class

Sampling points

Samples

Kolmogorov–Smirnov’s normality test

Kruskal–Wallis’s test

Conover-Iman’s test

p value

Distribution

p value

Average rank (mg/L)

Groups

 < 5

5

41

0.2361

Normal

 < 0.0001

345,06

c

5–30

41

203

 < 0.0001

Non-normal

260,50

b

 > 30

60

206

 < 0.0001

Non-normal

167,22

a

Appendix 4. Normality on distribution test and Kruskal–Wallis test to examine the effects of land use (residential, agricultural, and other) on groundwater nitrate concentration. A post hoc Conover-Iman’s test with Bonferroni correction was used to determine the significance level (p = 0.0167). Significant differences (p ≤ 0.0167) indicated by different letters

Land

Observations

Frequency > MCL (%)

Kolmogorov–Smirnov’s normality test

Kruskal–Wallis’s test

Conover-Iman test

p value

Decision

p value

Average rank (mg/L)

Groups

Residential

70

41.43

0.0459

Non-normal

0.0024

163,41

b

Agricultural

246

32.93

0.0051

Non-normal

167,65

b

Other

10

10.00

0.2605

Normal

62,05

a

Appendix 5. Kruskal–Wallis test to examine the difference between nitrate concentrations unregistered at a catchment scale. A post hoc Conover-Iman test with Bonferroni correction was used to determine significant differences (p ≤ 0.005), indicated by different letters

Watershed

Sampling point

Samples

Rate > MCL (%)

Kolmogorov–Smirnov’s normality test

Kruskal–Wallis test

Conover-Iman test

p value

Decision

p value

Average rank

Groups

Coastal Cap Matifou

73

345

53.62

0.0006

Non-normal

 < 0.0001

748,17

c

El Harrach

113

335

32.54

 < 0.0001

Non-normal

526,78

b

Mazafran

79

208

13.46

 < 0.0001

Non-normal

435,75

a

Oued Chiffa

31

139

17.99

0.1774

Normal

520,98

ab

Oued Djer Bouroumi

20

158

48.10

 < 0.0001

Non-normal

664,95

c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LAGOUN, A.M., BOUZID-LAGHA, S., BENDJABALLAH-LALAOUI, N. et al. Geographic information system–based approach and statistical modeling for assessing nitrate distribution in the Mitidja aquifer, Northern Algeria. Environ Monit Assess 193, 631 (2021). https://doi.org/10.1007/s10661-021-09427-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09427-x

Keywords

Navigation