Skip to main content
Log in

In vitro gastrointestinal resistance of Lactobacillus acidophilus in some dairy products

  • Food Microbiology – Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

In this study, different dairy products such as ice cream, yoghurt, white pickled cheese, and fermented acidophilus milk were manufactured by using either Lactobacillus acidophilus DSM 20,079 or Lactobacillus acidophilus NCFM. The counts of L. acidophilus in the samples on days 1, 15, and 30 of the storage were determined. Additionally, the samples contained L. acidophilus were passed through a dynamic gastrointestinal model designed in laboratory conditions to compare the protective effect of different dairy products on viability of L. acidophilus against stress factors of the gastrointestinal model. The counts of L. acidophilus NCFM and L. acidophilus DSM 20,079 in the samples decreased by between 0.04 and 0.37 log units and by between 0.11 and 0.27 log units, respectively, within 30 days of storage. During the passage through the gastrointestinal model, the highest percentage reduction in the counts of L. acidophilus was determined in yoghurt followed by fermented acidophilus milk, white pickled cheese, and ice cream, respectively. The reduction in the counts of L. acidophilus in the samples during the passage through the model increased with extension of storage time. The results of this study showed that the reduction in the counts L. acidophilus in the samples during the passage through the model was influenced significantly by the matrix of the dairy product and storage period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wong A, Saint Ngu DY, Dan LA, Ooi A, Lim RLH (2015) Detection of antibiotic resistance in probiotics of dietary supplements. Nutr J 14:95. https://doi.org/10.1186/s12937-015-0084-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Phillips M, Kailasapathy K, Tran L (2006) Viability of commercial probiotic cultures (L. acidophilus, Bifidobacterium sp., L. casei, L. paracasei and L. rhamnosus) in cheddar cheese. Int J Food Microbiol 108:276–280. https://doi.org/10.1016/j.ijfoodmicro.2005.12.009

    Article  CAS  PubMed  Google Scholar 

  3. Zoumpopoulou G, Pot B, Tsakalidou E, Papadimitriou K (2017) Dairy probiotics: beyond the role of promoting gut and immune health. Int Dairy J 67:46–60. https://doi.org/10.1016/j.idairyj.2016.09.010

    Article  Google Scholar 

  4. Homayouni A, Alizadeh M, Alikhah H, Zijah V (2012) Functional dairy probiotic food development: trends, concepts, and products. In: Rigobelo E (ed) Probiotics. IntechOpen, Rijeka, pp 772–797

    Google Scholar 

  5. Casarotti SN, Penna ALB (2015) Acidification profile, probiotic in vitro gastrointestinal tolerance and viability in fermented milk with fruit flours. Int Dairy J 41:1–6. https://doi.org/10.1016/j.idairyj.2014.08.021

    Article  CAS  Google Scholar 

  6. Meybodi NM, Mortazavian AM, Arab M, Nematollahi A (2020) Probiotic viability in yoghurt: a review of influential factors. Int Dairy J. https://doi.org/10.1016/j.idairyj.2020.104793

    Article  Google Scholar 

  7. Valente GLC, Acurcio LB, Freitas LPV, Nicoli JR, Silva AM, Souza MR, Penna CFAM (2019) Short communication: In vitro and in vivo probiotic potential of Lactobacillus plantarum B7 and Lactobacillus rhamnosus D1 isolated from Minas artisanal cheese. J Dairy Sci 102:5957–5961. https://doi.org/10.3168/jds.2018-15938

    Article  CAS  PubMed  Google Scholar 

  8. Pradhan D, Mallappa RH, Grover S (2020) Comprehensive approaches for assessing the safety of probiotic bacteria. Food Control 108:106872. https://doi.org/10.1016/j.foodcont.2019.106872

    Article  CAS  Google Scholar 

  9. Yao M, Xie J, Du H, McClements DJ, Xiao H, Li L (2020) Progress in microencapsulation of probiotics: a review. Compr Rev Food Sci Food Saf 19:857–874. https://doi.org/10.1111/1541-4337.12532

    Article  PubMed  Google Scholar 

  10. Sumeri I, Arike L, Adamberg K, Paalme T (2008) Single bioreactor gastrointestinal tract simulator for study of survival of probiotic bacteria. Appl Microbiol Biotechnol 80:317–324. https://doi.org/10.1007/s00253-008-1553-8

    Article  CAS  PubMed  Google Scholar 

  11. Mainville I, Arcand Y, Farnworth E (2005) A dynamic model that simulates the human upper gastrointestinal tract for the study of probiotics. Int J Food Microbiol 99:287–296. https://doi.org/10.1016/j.ijfoodmicro.2004.08.020

    Article  CAS  PubMed  Google Scholar 

  12. Chen J, Gaikwad V, Holmes M, Murray B, Povey M, Wang Y, Zhang Y (2011) Development of a simple model device for in vitro gastric digestion investigation. Food Funct 2:174–182. https://doi.org/10.1039/C0FO00159G

    Article  CAS  PubMed  Google Scholar 

  13. Parada J, Aguilera JM (2013) Effect of food microstructure on nutrition bioavailability and health. In: Ciesarova Z, Plasencia FP (eds) Chemical Food Safety and Health. Nova Science Publishers, London, pp 218–223

    Google Scholar 

  14. Gomand F, Borges F, Burgain J, Guerin J, Revol-Junelles AM, Gaiani C (2019) Food matrix design for effective lactic acid bacteria delivery. Annu Rev Food Sci T 10:285–310. https://doi.org/10.1146/annurev-food-032818-121140

    Article  CAS  Google Scholar 

  15. Sanders ME, Marco ML (2010) Food formats for effective delivery of probiotics. Annu Rev Food Sci T 1:65–85. https://doi.org/10.1146/annurev.food.080708.100743

    Article  Google Scholar 

  16. Goderska K, Czarnecki Z (2007) Characterization of selected strains from Lactobacillus acidophilus and Bifidobacterium bifidum. Af J Microbiol Res 1(6):65–78

    Google Scholar 

  17. Sanders ME, Klaenhammer TR (2011) Invited review: The scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. J Dairy Sci 84(2):319–331. https://doi.org/10.3168/jds.S0022-0302(01)74481-5

    Article  Google Scholar 

  18. Ergin F, Atamer Z, Arslan AA, Gocer EMC, Demir M, Samtlebe M, Hinrichs J, Kücükcetin A (2016) Application of cold-and heat-adapted Lactobacillus acidophilus in the manufacture of ice cream. Int Dairy J 59:72–79. https://doi.org/10.1016/j.idairyj.2016.03.004

    Article  CAS  Google Scholar 

  19. Kücükcetin A (2008) Effect of heat treatment and casein to whey protein ratio of skim milk on graininess and roughness of stirred yoghurt. Food Res Int 41:165–171. https://doi.org/10.1016/j.foodres.2007.11.003

    Article  CAS  Google Scholar 

  20. Kasımoğlu A, Göncüoğlu M, Akgün S (2004) Probiotic white cheese with Lactobacillus acidophilus. Int Dairy J 14:1067–1073. https://doi.org/10.1016/j.idairyj.2004.04.006

    Article  Google Scholar 

  21. Božanić R, Tratnik L, Herceg Z, Marić O (2004) The influence of milk powder, whey protein concentrate and inulin on the on the quality of cow and goat acidophilus milk. Acta Aliment 33:337–346. https://doi.org/10.1556/AAlim.33.2004.4.4

    Article  Google Scholar 

  22. Madureira AR, Amorim M, Gomes AM, Pintado ME, Malcata FX (2011) Protective effect of whey cheese matrix on probiotic strains exposed to simulated gastrointestinal conditions. Food Res Int 44:465–470. https://doi.org/10.1016/j.foodres.2010.09.010

    Article  CAS  Google Scholar 

  23. Marteau P, Minekus M, Havenaar R, Huis J (1997) Survival of lactic acid bacteria in a dynamic model of the stomach and small intestine: validation and the effects of bile. J Dairy Sci 80:1031–1037. https://doi.org/10.3168/jds.S0022-0302(97)76027-2

    Article  CAS  PubMed  Google Scholar 

  24. VDLUFA (2003) Handbuch der landwirtschaftlichen Versuchs-und Untersuchungsmethodik, Methodenbuch Band VI-Chemische, physikalische und mikrobiologische Untersuchungsverfahren für Milch, Milchprodukte und Molkereihilfsstoffe. Verlag Darmstadt, Germany: Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten

  25. Bradley R, Arnold E, Barbano D, Semerad R, Smith D, Vines B (1992) Chemical and physical methods. In: Marshall RT (ed) Standard methods for the examination of dairy products. American Public Health Association, Washington, DC, pp 433–531

  26. IDF (1997) Dairy starter cultures of lactic acid bacteria (LAB). Standard of identity. Standard 149A. International Dairy Federation, Brussels

    Google Scholar 

  27. Tabasco R, Paarup T, Janer C, Peláez C, Requena T (2007) Selective enumeration and identification of mixed cultures of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, L. acidophilus, L. paracasei subsp. paracasei and Bifidobacterium lactis in fermented milk. Int Dairy J 17:1107–1114. https://doi.org/10.1016/j.idairyj.2007.01.010

    Article  CAS  Google Scholar 

  28. Evrendilek GA, Koca N, Harper J, Balasubramaniam V (2008) High-pressure processing of Turkish white cheese for microbial inactivation. J Food Protect 71:102–108. https://doi.org/10.4315/0362-028X-71.1.102

    Article  Google Scholar 

  29. IDF (1987) Milk and mik products enumeration of microorganisms-colony count at 30 °C. Standard 100A. International Dairy Federation, Brussels

    Google Scholar 

  30. Ong L, Henriksson A, Shah N (2006) Development of probiotic Cheddar cheese containing Lactobacillus acidophilus, Lact. casei, Lact. paracasei and Bifidobacterium spp. and the influence of these bacteria on proteolytic patterns and production of organic acid. Int Dairy J 16:446–456. https://doi.org/10.1016/j.idairyj.2005.05.008

    Article  CAS  Google Scholar 

  31. Moayednia A (2012) The shifts of acidophilus milk at the refrigerator. JFBT 2:65–70

    Google Scholar 

  32. Kos B, Suskovic J, Goreta J, Matosic S (2000) Effect of protectors on the viability of Lactobacillus acidophilus M92 in simulated gastrointestinal conditions. Food Technol Biotech 38:121–128

    CAS  Google Scholar 

  33. Ranadheera CS, Evans C, Adams M, Baines S (2013) Production of probiotic ice cream from goat’s milk and effect of packaging materials on product quality. Small Rumin Res 112:174–180. https://doi.org/10.1016/j.smallrumres.2012.12.020

    Article  Google Scholar 

  34. Ribeiro MCE, Chaves KS, Gebara C, Infante FN, Grosso CR, Gigante ML (2014) Effect of microencapsulation of Lactobacillus acidophilus LA-5 on physicochemical, sensory and microbiological characteristics of stirred probiotic yoghurt. Food Res Int 66:424–431. https://doi.org/10.1016/j.foodres.2014.10.019

    Article  CAS  Google Scholar 

  35. Akpınar A (2008) Acidophlus milk properties with to produce added different flavour components. PhD thesis, Ege University. İzmir. 01.02.2016. https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp. 2 Jan 2016

  36. Afzaal M, Khan AU, Saeed F, Arshad MS, Khan MA, Saeed M, Maan AA, Khan MK, Ismail Z, Ahmed A, Tufail T, Ateeq H, Anjum FM (2020) Survival and stability of free and encapsulated probiotic bacteria under simulated gastrointestinal conditions and in ice cream. Food Sci Nutr 8:1649–1656. https://doi.org/10.1002/fsn3.1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moschopoulou E, Sakkas L, Zoidou E, Theodorou G, Sgouridou E, Kalathaki C, Liarakou A, Chatzigeorgiou A, Politis I, Moatsou G (2018) Effect of milk kind and storage on the biochemical, textural and biofunctional characteristics of set-type yoghurt. Int Dairy J 77:47–55. https://doi.org/10.1016/j.idairyj.2017.09.008

    Article  CAS  Google Scholar 

  38. Kılıç GB, Kuleaşan H, Eralp İ, Karahan AG (2009) Manufacture of Turkish Beyaz cheese added with probiotic strains. LWT-Food Sci T 42:1003–1008. https://doi.org/10.1016/j.lwt.2008.12.015

    Article  CAS  Google Scholar 

  39. Junaid M, Javed I, Abdullah M, Gulzar M, Younas U, Nasir J, Ahmad N (2013) Development and quality assessment of flavored probiotic acidophilus milk. J Anim Plant Sci 23:1342–1346

    Google Scholar 

  40. Mousavi M, Heshmati A, Garmakhany AD, Vahidinia A, Taheri M (2019) Optimization of the viability of Lactobacillus acidophilus and physico-chemical, textural and sensorial characteristics of flaxseed-enriched stirred probiotic yogurt by using response surface methodology. LWT-Food Sci T 102:80–88. https://doi.org/10.1016/j.lwt.2018.12.023

    Article  CAS  Google Scholar 

  41. Parussolo G, Busatto RT, Schmitt J, Pauletto R, Schons PF, Ries EF (2017) Synbiotic ice cream containing yacon flour and Lactobacillus acidophylus NCFM. LWT-Food Sci T 82:192–198. https://doi.org/10.1016/j.lwt.2017.04.049

    Article  CAS  Google Scholar 

  42. Geraldi MV, Tulini FL, Souza VM, De Martinis EC (2018) Development of yoghurt with juçara pulp (Euterpe edulis M.) and the probiotic Lactobacillus acidophilus La5. Probiotics Antimicro 10:71–76. https://doi.org/10.1007/s12602-017-9280-z

    Article  CAS  Google Scholar 

  43. Nighswonger BD, Brashears MM, Gilliland SE (1996) Viability of Lactobacillus acidophilus and Lactobacillus casei in fermented milk products during fefrigerated storage. J Dairy Sci 79:212–219. https://doi.org/10.3168/jds.S0022-0302(96)76353-1

    Article  CAS  PubMed  Google Scholar 

  44. Ng EW, Yeung M, Tong PS (2011) Effects of yogurt starter cultures on the survival of Lactobacillus acidophilus. Int J Food Microbio 145:169–175. https://doi.org/10.1016/j.ijfoodmicro.2010.12.006

    Article  CAS  Google Scholar 

  45. Farag MA, El Hawary EA, Elmassry MM (2019) Rediscovering acidophilus milk, its quality characteristics, manufacturing methods, flavor chemistry and nutritional value. Crit Rev Food Sci Nutr 60(18):3024–3041. https://doi.org/10.1080/10408398.2019.1675584

    Article  CAS  PubMed  Google Scholar 

  46. Kailasapathy K (2006) Survival of free and encapsulated probiotic bacteria and their effect on the sensory properties of yoghurt. LWT-Food Sci T 39:1221–1227. https://doi.org/10.1016/j.lwt.2005.07.013

    Article  CAS  Google Scholar 

  47. Sharp M, McMahon DJ, Broadbent JR (2008) Comparative evaluation of yogurt and low-fat cheddar cheese as delivery media for probiotic Lactobacillus casei. J Food Sci 73:375–377. https://doi.org/10.1111/j.1750-3841.2008.00882.x

    Article  CAS  Google Scholar 

  48. Ranadheera CS, Evans C, Adams M, Baines S (2012) In vitro analysis of gastrointestinal tolerance and intestinal cell adhesion of probiotics in goat’s milk ice cream and yogurt. Food Res Int 49:619–625. https://doi.org/10.1016/j.foodres.2012.09.007

    Article  CAS  Google Scholar 

  49. Homayouni A, Ehsani M, Azizi A, Razavi S, Yarmand M (2008) Growth and survival of some probiotic strains in simulated ice cream conditions. J Appl Sci 8:379–382. https://doi.org/10.3923/jas.2008.379.382

    Article  Google Scholar 

  50. Homayouni A, Azizi A, Ehsani M, Yarmand M, Razavi S (2008) Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream. Food Chem 111:50–55. https://doi.org/10.1016/j.foodchem.2008.03.036

    Article  CAS  Google Scholar 

  51. Corcoran B, Stanton C, Fitzgerald G, Ross R (2005) Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl Environ Microbiol 71:3060–3067. https://doi.org/10.1128/AEM.71.6.3060-3067.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cruz AG, Antunes AEC, Sousa ALOP, Faria JAF, Saad SMI (2009) Ice-cream as a probiotic food carrier. Food Res Int 42:1233–1239. https://doi.org/10.1016/j.foodres.2009.03.020

    Article  Google Scholar 

  53. Flach J, van der Waal MB, van den Nieuwboer M, Claassen E, Larsen OF (2018) The underexposed role of food matrices in probiotic products: reviewing the relationship between carrier matrices and product parameters. Crit Rev Food Sci Nutr 58:2570–2584. https://doi.org/10.1080/10408398.2017.1334624

    Article  CAS  PubMed  Google Scholar 

  54. Hayes M, Coakley M, O’sullivan L, Stanton C (2006) Cheese as a delivery vehicle for probiotics and biogenic substances. Aust J Dairy Technol 61:132–141

    CAS  Google Scholar 

  55. Neffe-Skocińska K, Rzepkowska A, Szydłowska A, Kołożyn-Krajewska D (2018) Trends and possibilities of the use of probiotics in food production. In: Holban AM, Grumezescu AM (eds) Alternative and Replacement Foods. Elsevier Academic Press, Cambridgen, pp 65–94

    Chapter  Google Scholar 

  56. Hernández-Galán L, Cattenoz T, Le Feunteun S, Canette A, Briandet R, Le-Guin S, Guedon E, Castellote J, Delettre J, Bony ED (2017) Effect of dairy matrices on the survival of Streptococcus thermophilus, Brevibacterium aurantiacum and Hafnia alvei during digestion. Food Res Int 100:477–488. https://doi.org/10.1016/j.foodres.2017.07.044

    Article  CAS  PubMed  Google Scholar 

  57. García-Hernández J, Moreno Y, Chuan C, Hernández M (2012) In vivo study of the survival of Lactobacillus delbruecki subsp. bulgaricus CECT 4005T and Streptococcus thermophilus CECT 801 by DVC-FISH after consumption of fermented milk. J Food Sci 77:593–597. https://doi.org/10.1111/j.1750-3841.2012.02918.x

    Article  CAS  Google Scholar 

  58. Pacheco KC, del Toro GV, Martínez FR, Durán-Páramo E (2010) Viability of Lactobacillus delbrueckii under human gastrointestinal conditions simulated in vitro. Am J Agric Biol Sci 5:37–42. https://doi.org/10.3844/ajabssp.2010.37.42

    Article  Google Scholar 

  59. Sumeri I, Adamberg S, Uusna R, Sarand I, Paalme T (2012) Survival of cheese bacteria in a gastrointestinal tract simulator. Int Dairy J 25:36–41. https://doi.org/10.1016/j.idairyj.2011.12.016

    Article  CAS  Google Scholar 

  60. Adouard N, Magne L, Cattenoz T, Guillemin H, Foligné B, Picque D, Bonnarme P (2016) Survival of cheese-ripening microorganisms in a dynamic simulator of the gastrointestinal tract. Food Microbiol 53:30–40. https://doi.org/10.1016/j.fm.2015.03.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Dr. Jörg Hinrichs and Dr. Zeynep Atamer of the University of Hohenheim for their critical comments and suggestions in the preparation of the manuscript.

Funding

This study was supported by the Scientific Research Projects Coordination Unit of Akdeniz University (Project number: 2014.03.0121.009) and the Alexander von Humboldt Foundation (Project number: 3.4-/1116798-TUR-IP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Kücükcetin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Susana Marta Isay Saad

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gocer, E.M.C., Ergin, F., Kücükcetin, I.O. et al. In vitro gastrointestinal resistance of Lactobacillus acidophilus in some dairy products. Braz J Microbiol 52, 2319–2334 (2021). https://doi.org/10.1007/s42770-021-00590-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00590-4

Keywords

Navigation