Skip to main content
Log in

Amberlyst 15®: An Efficient Green Catalyst for the Synthesis of Heterocyclic Compounds

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Amberlyst 15 (A-15) is one of the most common heterogeneous catalysts in organic synthesis. Since its development in 1962, A-15 has proved to be a highly efficient green catalyst in many organic reactions that require acid catalysis. In the last two decades, many reports had been issued that focused on the use of A-15 as a catalyst in heterocyclic synthesis. The use of A-15 implies many advantages as being inexpensive, non-toxic, easily handled, and easily separable from the reaction mixture. Other advantages include easy separation of the products and the recyclability. The latter is highly useful in sustainable chemistry. The present review summarizes the applications of Amberlyst 15 as a green catalyst in the synthesis of heterocycles during the last decade (from 2010 till 2019). The review is classified according to the ring size with a focus on the mechanism of reactions catalyzed by A-15.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Kitanosono, T., Masuda, K., Xu, P., and Kobayashi, S., Chem. Rev., 2018, vol. 118, p. 679. https://doi.org/10.1021/acs.chemrev.7b00417

    Article  CAS  PubMed  Google Scholar 

  2. Wacławek, S., Padil, V.V.T., and Černík, M., Ecol. Chem. Eng. S, 2018, vol. 25, no. 1, p. 9. https://doi.org/10.1515/eces-2018-0001

    Article  CAS  Google Scholar 

  3. Kokel, A., Schäfer, C., and Török, B., Curr. Org. Synth., 2019, vol. 16, no. 4, p. 615. https://doi.org/10.2174/1570179416666190206141028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pal, R., Sarkar, T., and Khasnobis, S., Arkivoc. 2012, vol. 2012, part (i), p. 570. https://doi.org/10.3998/ark.5550190.0013.114

  5. Abrams, I.M. and Milk, J.R., React. Funct. Polym., 1997, vol. 35, p. 7. https://doi.org/10.1016/S1381-5148(97)00058-8

    Article  CAS  Google Scholar 

  6. Kunin, R., Meitzner, E., Oline, J., Fischer, S., and Frisch, N., Ind. Eng. Chem. Prod. Res. Dev., 1962, vol. 1, no. 2, p. 140. https://doi.org/10.1021/i360002a016

    Article  CAS  Google Scholar 

  7. Corain, B., Zecca, M., and Jeřábek, K., J. Mol. Catal. A: Chem., 2001, vol. 177, no. 1, p. 3. https://doi.org/10.1016/S1381-1169(01)00305-3

    Article  CAS  Google Scholar 

  8. Miyazawa, T., Kusunoki, Y., Kunimori, K., and Tomishige, K., J. Catal., 2006, vol. 240, no. 2, p. 213. https://doi.org/10.1016/j.jcat.2006.03.023

    Article  CAS  Google Scholar 

  9. Shelkar, R., Singh, A., and Nagarkar, J., Tetrahedron Lett., 2013, vol. 54, no. 1, p. 106. https://doi.org/10.1016/j.tetlet.2012.10.116

    Article  CAS  Google Scholar 

  10. Palmieri, A., Gabrielli, S., and Ballini, R., Chem. Commun., 2010, vol. 46, no. 33, p. 6165. https://doi.org/10.1039/c0cc01097a

    Article  CAS  Google Scholar 

  11. Shinde, V.M., Patil, G.N., Katariya, A., and Mahajan, Y.S., Chem. Eng. Process., 2015, vol. 95, p. 241. https://doi.org/10.1016/j.cep.2015.06.016

    Article  CAS  Google Scholar 

  12. Taylor, R. and Krishna, R., Chem. Eng. Sci., 2000, vol. 55, no. 22, p. 5183. https://doi.org/10.1016/S0009-2509(00)00120-2

    Article  CAS  Google Scholar 

  13. Segovia-Hernández, J.G., Hernández, S., and Bonilla Petriciolet, A., Chem. Eng. Process., 2015, vol. 97, p. 134. https://doi.org/10.1016/j.cep.2015.09.004

    Article  CAS  Google Scholar 

  14. Gupta, R., Shah, S., and Dubey, S., Imp. J. Interdiscip. Res., 2016, vol. 2, no. 12, p. 314. https://www.onlinejournal.in/IJIRV2I12/051.pdf

    Google Scholar 

  15. Rosatella, A.A., Simeonov, S.P., Frade, R.F.M., and Afonso, C.A.M., Green Chem., 2011, vol. 13, no. 4, p. 754. https://doi.org/10.1039/c0gc00401d

    Article  CAS  Google Scholar 

  16. Gallezot, P., Chem. Soc. Rev., 2012, vol. 41, no. 4, p. 1538. https://doi.org/10.1039/c1cs15147a

    Article  CAS  PubMed  Google Scholar 

  17. Fan, W., Verrier, C., Queneau, Y., and Popowycz, F., Curr. Org. Synth., 2019, vol. 16, p. 583. https://doi.org/10.2174/1570179416666190412164738

    Article  CAS  PubMed  Google Scholar 

  18. Zhu, H., Cao, Q., Li, C., and Mua, X., Carbohydr. Res., 2011, vol. 346, no. 13, p. 2016. https://doi.org/10.1016/j.carres.2011.05.026

    Article  CAS  PubMed  Google Scholar 

  19. Takagaki, A., Ohara, M., Nishimura, S., and Ebitani, K., Chem. Commun., 2009, p. 6276. https://doi.org/10.1039/b914087e

  20. Tuteja, J., Nishimura, S., and Ebitani, K., Bull. Chem. Soc. Jpn., 2012, vol. 85, no. 3, p. 275. https://doi.org/10.1246/bcsj.20110287

    Article  CAS  Google Scholar 

  21. Jeong, J., Antonyraj, C.A., Shin, S., Kim, S., Kim, B., Lee, K.Y., and Cho, J.K., J. Ind. Eng. Chem., 2013, vol. 19, no. 4, p. 1106. https://doi.org/10.1016/j.jiec.2012.12.004

    Article  CAS  Google Scholar 

  22. Aellig, C. and Hermans, I., ChemSusChem, 2012, vol. 5, no. 9, p. 1737. https://doi.org/10.1002/cssc.201200279

    Article  CAS  PubMed  Google Scholar 

  23. Shimizu, K.-i., Uozumi, R., and Satsuma, A., Catal. Commun., 2009, vol. 10, no. 14, p. 1849. https://doi.org/10.1016/j.catcom.2009.06.012

    Article  CAS  Google Scholar 

  24. Wang, J., Xu, W., Ren, J., Liu, X., Lu, G., and Wang, Y., Green Chem., 2011, vol. 13, no. 10, p. 2678. https://doi.org/10.1039/c1gc15306d

    Article  CAS  Google Scholar 

  25. Lansalot-Matras, C. and Moreau, C., Catal. Commun., 2003, vol. 4, no. 10, p. 517. https://doi.org/10.1016/S1566-7367(03)00133-X

    Article  CAS  Google Scholar 

  26. Sampath, G. and Kannan, S., Catal. Commun., 2013, vol. 37, p. 41. https://doi.org/10.1016/j.catcom.2013.03.021

    Article  CAS  Google Scholar 

  27. Alonso, D.A., Baeza, A., Chinchilla, R., Guillena, G., Pastor, I.M., and Ramón, D.J., Eur. J. Org. Chem., 2016, vol. 2016, p. 612. https://doi.org/10.1002/ejoc.201501197

    Article  CAS  Google Scholar 

  28. Paiva, A., Craveiro, R., Aroso, I., Martins, M., Reis, R.L., and Duarte, A.R.C., ACS Sustainable Chem. Eng., 2014, vol. 2, no. 5, p. 1063. https://doi.org/10.1021/sc500096j

    Article  CAS  Google Scholar 

  29. Vanda, H., Dai, Y., Wilson, E.G., Verpoorte, R., and Choi, Y.H., C. R. Chim., 2018, vol. 21, no. 6, p. 628. https://doi.org/10.1016/j.crci.2018.04.002

    Article  CAS  Google Scholar 

  30. Liu, Y., Friesen, J.B., McAlpine, J.B., Lankin, D.C., Chen, S.-N., and Paul, G.F., J. Nat. Prod., 2018, vol. 81, no. 3, p. 679. https://doi.org/10.1016/j.physbeh.2017.03.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hayyan, M., Hashim, M.A., Hayyan, A., Al-Saadi, M.A., AlNashef, I.M., Mirghani, M.E.S., and Saheed, O.K., Chemosphere, 2013, vol. 90, no. 7, p. 2193. https://doi.org/10.1016/j.chemosphere.2012.11.004

    Article  CAS  PubMed  Google Scholar 

  32. Smith, E.L., Abbott, A.P., and Ryder, K.S., Chem. Rev., 2014, vol. 114, no. 21, p. 11060. https://doi.org/10.1021/cr300162p

    Article  CAS  PubMed  Google Scholar 

  33. Suriyanarayanan, S., Olsson, G.D., Kathiravan, S., Ndizeye, N., and Nicholls, I.A., Int. J. Mol. Sci., 2019, vol. 20, no. 12, p. 2857. https://doi.org/10.3390/ijms20122857

    Article  CAS  PubMed Central  Google Scholar 

  34. Qin, H., Hu, X., Wang, J., Cheng, H., Chen, L., and Qi, Z., Green Energy Environ., 2020, vol. 5, no. 1, p. 8. https://doi.org/10.1016/j.gee.2019.03.002

    Article  Google Scholar 

  35. Ünlü, A.E., Arlkaya, A., and Takaç, S., Green Process. Synth., 2019, vol. 8, no. 1, p. 355. https://doi.org/10.1515/gps-2019-0003

    Article  CAS  Google Scholar 

  36. Marullo, S., Rizzo, C., and D’anna, F., ACS Sustainable Chem. Eng., 2019, vol. 7, no. 15, p. 13359. https://doi.org/10.1021/acssuschemeng.9b02605

    Article  CAS  Google Scholar 

  37. Ru, C., Luff, C., Begli, A.H., and Koenig, B., Synth. Commun., 2012, vol. 42, no. 21, p. 3112. https://doi.org/10.1080/00397911.2011.576375

    Article  CAS  Google Scholar 

  38. Shirotori, M., Nishimura, S., and Ebitani, K., Catal. Sci. Technol., 2014, vol. 4, no. 4, p. 971. https://doi.org/10.1039/c3cy00980g

    Article  CAS  Google Scholar 

  39. Dias, A.S., Pillinger, M., and Valente, A.A., J. Catal., 2005, vol. 229, no. 2, p. 414. https://doi.org/10.1016/j.jcat.2004.11.016

    Article  CAS  Google Scholar 

  40. Lanzafame, P., Temi, D.M., Perathoner, S., Spadaro, A.N., and Centi, G., Catal. Today, 2012, vol. 179, no. 1, p. 178. https://doi.org/10.1016/j.cattod.2011.07.018

    Article  CAS  Google Scholar 

  41. Jeon, W., Ban, C., Kim, J.E., Woo, H.C., and Kim, D.H., J. Mol. Catal. A: Chem., 2016, vol. 423, p. 264. https://doi.org/10.1016/j.molcata.2016.07.020

    Article  CAS  Google Scholar 

  42. Chiurchiù, E., Patehebieke, Y., Gabrielli, S., Ballini, R., and Palmieri, A., Adv. Synth. Catal., 2019, vol. 361, no. 9, p. 2042. https://doi.org/10.1002/adsc.201801660

    Article  CAS  Google Scholar 

  43. Murthi, P.R.K., Rambabu, D., Rao, M.V.B., and Pal, M., Tetrahedron Lett., 2014, vol. 55, no. 2, p. 507. https://doi.org/10.1016/j.tetlet.2013.11.073

    Article  CAS  Google Scholar 

  44. Aldmairi, A.H., Knight, D.W., and Wirth, T., Synlett, 2017, vol. 28, no. 20, p. 2976. https://doi.org/10.1055/s-0036-1591513

    Article  CAS  Google Scholar 

  45. Kumar, A.D., Prabhudeva, M.G., Bharath, S., Kumara, K., Lokanath, N.K., and Kumar, K.A., Bioorg. Chem., 2018, vol. 80, p. 444. https://doi.org/10.1016/j.bioorg.2018.06.023

    Article  CAS  PubMed  Google Scholar 

  46. Prabhudeva, M.G., Kumara, K., Dileep Kumar, A., Ningappa, M.B., Lokanath, N.K., and Ajay Kumar, K., Res. Chem. Intermed., 2018, vol. 44, no. 11, p. 6453. https://doi.org/10.1007/s11164-018-3501-2

    Article  CAS  Google Scholar 

  47. Prabhudeva, M.G., Vivek, H.K., and Kumar, K.A., Chem. Data Collect., 2019, vol. 20, article ID 100193. https://doi.org/10.1016/j.cdc.2019.100193

  48. Pandit, S.S., Bhalerao, S.K., Aher, U.S., Adhav, G.L., and Pandit, V.U., J. Chem. Sci., 2011, vol. 123, no. 4, p. 421. https://doi.org/10.1007/s12039-011-0097-0

    Article  CAS  Google Scholar 

  49. Nirwan, N. and Pareek, C., Int. J. Sci. Res. Sci. Technol., 2017, vol. 3, no. 8, p. 76. https://doi.org/10.32628/IJSRST173824

    Article  Google Scholar 

  50. Zhang, H., Dong, D.-Q., and Wang, Z.-L., Synthesis, 2016, vol. 48, no. 1, p. 131. https://doi.org/10.1055/s-0035-1560488

    Article  CAS  Google Scholar 

  51. Gunduz, H., Kumbaraci, V., Özkılıç, Y., Tüzün, N., and Talinli, N., ChemistrySelect, 2019, vol. 4, no. 24, p. 7278. https://doi.org/10.1002/slct.201901403

    Article  CAS  Google Scholar 

  52. Vyskočilová, E., Rezková, L., Vrbková, E., Paterová, I., and Červený, L., Res. Chem. Intermed., 2016, vol. 42, no. 2, p. 725. https://doi.org/10.1007/s11164-015-2052-z

    Article  CAS  Google Scholar 

  53. Li, J.J., Name Reactions. A Collection of Detailed Mechanisms and Synthetic Applications, Cham: Springer, 2014, 5th ed. https://doi.org/10.1007/978-3-319-03979-4

  54. Prins, H.J., Chem. Weekbl., 1919, vol. 16, p. 1072.

    CAS  Google Scholar 

  55. Gelmini, A., Albonetti, S., Cavani, F., Cesari, C., Lolli, A., Zanotti, V., and Mazzoni, R., Appl. Catal., B, 2016, vol. 180, p. 38. https://doi.org/10.1016/j.apcatb.2015.06.003

    Article  CAS  Google Scholar 

  56. Jetti, S.R., Verma, D., and Jain, S., Int. Scholarly Res. Not., 2012, vol. 2012, article ID 480989. https://doi.org/10.5402/2012/480989

  57. Jetti, S.R., Neelaiah Babu, G., Paliwal, P., Bhatewra, A., Kadre, T., and Jain, S., Pharma Chem., 2012, vol. 4, no. 1, p. 417.

    Google Scholar 

  58. Shen, P., Xu, M., Yin, D., Xie, S., Zhou, C., and Li, F., Catal. Commun., 2016, vol. 77, p. 18. https://doi.org/10.1016/j.catcom.2016.01.010

    Article  CAS  Google Scholar 

  59. Rambabu, D., Murthi, P.R.K., Dulla, B., Rao, M.V.B., and Pal, M., Synth. Commun., 2013, vol. 43, no. 22, p. 3083. https://doi.org/10.1080/00397911.2013.769605

    Article  CAS  Google Scholar 

  60. Guha, C., Sepay, N., and Mallik, A.K., Monatsh. Chem., 2015, vol. 146, no. 8, p. 1349. https://doi.org/10.1007/s00706-014-1401-8

    Article  CAS  Google Scholar 

  61. Guha, C., Samanta, S., Sepay, N., and Mallik, A.K., Tetrahedron Lett., 2015, vol. 56, no. 34, p. 4954. https://doi.org/10.1016/j.tetlet.2015.07.005

    Article  CAS  Google Scholar 

  62. Sepay, N., Mallik, S., Guha, C., and Mallik, A.K., RSC Adv., 2016, vol. 6, no. 98, p. 96016. https://doi.org/10.1039/c6ra13584f

    Article  CAS  Google Scholar 

  63. Samanta, S., Sepay, N., Mallik, S., Mondal, R., Rahaman Molla, M., and Mallik, A.K., Synth. Commun., 2017, vol. 47, no. 23, p. 2195. https://doi.org/10.1080/00397911.2017.1365906

    Article  CAS  Google Scholar 

  64. Bouasla, S., Amaro-Gahete, J., Esquivel, D., López, M.I., Jiménez-Sanchidrián, C., Teguiche, M., and Romero-Salguero, F.J., Molecules, 2017, vol. 22, no. 12, p. 2072. https://doi.org/10.3390/molecules22122072

    Article  CAS  PubMed Central  Google Scholar 

  65. Von Pechmann, H. and Duisberg, C., Ber., 1883, vol. 16, p. 2119. https://doi.org/10.1002/cber.188301602117

    Article  Google Scholar 

  66. Merza, J., Chem. Mater. Res., 2018, vol. 10, no. 3, p. 16.

    Google Scholar 

  67. Hoefnagel, A.J., Gunnewegh, E.A., Downing, R.S., and Van Bekkum, H., J. Chem. Soc., Chem. Commun., 1995, no. 2, p. 225. https://doi.org/10.1039/C39950000225

    Article  Google Scholar 

  68. Khandekar, A.C. and Khadilkar, B.M., Synlett, 2002, vol. 2002, p. 152. https://doi.org/10.1055/s-2002-19332

    Article  Google Scholar 

  69. Nageswar, Y.V.D., Reddy, K.H.V., Ramesh, K., and Murthy, S.N., Org. Prep. Proced. Int., 2013, vol. 45, no. 1, p. 1. https://doi.org/10.1080/00304948.2013.743419

    Article  CAS  Google Scholar 

  70. Liu, J.-Y., Liu, J., Wang, J.-D., Jiao, D.-Q., and Liu, H.-W., Synth. Commun., 2010, vol. 40, no. 14, p. 2047. https://doi.org/10.1080/00397910903219401

    Article  CAS  Google Scholar 

  71. Chari, M.A., Tetrahedron Lett., 2011, vol. 52, no. 46, p. 6108. https://doi.org/10.1016/j.tetlet.2011.09.015

    Article  CAS  Google Scholar 

  72. Shaabani, A., Maleki, A., Mofakham, H., and Khavasi, H.R., J. Comb. Chem., 2008, vol. 10, no. 2, p. 323. https://doi.org/10.1021/cc7001777

    Article  CAS  PubMed  Google Scholar 

  73. Murthy, P.V., Rambabu, D., Krishna, G.R., Reddy, C.M., Prasad, K.R.S., Rao, M.V.B., and Pal, M., Tetrahedron Lett., 2012, vol. 53, no. 7, p. 863. https://doi.org/10.1016/j.tetlet.2011.12.023

    Article  CAS  Google Scholar 

  74. Rambabu, D., Kumar, S.K., Sreenivas, B.Y., Sandra, S., Kandale, A., Misra, P., Rao, M.V.B., and Pal, M., Tetrahedron Lett., 2013, vol. 54, no. 6, p. 495. https://doi.org/10.1016/j.tetlet.2012.11.057

    Article  CAS  Google Scholar 

  75. Kumar, S.K., Rambabu, D., Kumar, C.H.V., Sreenivas, B.Y., Prasad, K.R.S., Rao, M.V.B., and Pal, M., RSC Adv., 2013, vol. 3, no. 47, p. 24863. https://doi.org/10.1039/c3ra44703k

    Article  CAS  Google Scholar 

  76. Jetti, S.R., Bhatewara, A., Kadre, T., and Jain, S., Pharma Chem., 2016, vol. 8, no. 5, p. 98.

    CAS  Google Scholar 

  77. Muthukrishnan, I., Vachan, B.S., Karuppasamy, M., Eniyaval, A., Uma Maheswari, C., Nagarajan, S., Menéndez, J.C., and Sridharan, V., Org. Biomol. Chem., 2019, vol. 17, no. 28, p. 6872. https://doi.org/10.1039/c9ob01256g

    Article  CAS  PubMed  Google Scholar 

  78. Patil, V.V. and Shankarling, G.S., Catal. Commun., 2014, vol. 57, p. 138. https://doi.org/10.1016/j.catcom.2014.08.024

    Article  CAS  Google Scholar 

  79. Maurya, H.K. and Gupta, A., Tetrahedron Lett., 2014, vol. 55, no. 10, p. 1715. https://doi.org/10.1016/j.tetlet.2014.01.095

    Article  CAS  Google Scholar 

  80. Samanta, S., Das Gupta, A., Mondal, R., and Mallik, A.K., J. Chem. Sci., 2013, vol. 125, no. 4, p. 737. https://doi.org/10.1007/s12039-013-0442-6

    Article  CAS  Google Scholar 

  81. Hese, S.V., Kamble, R.D., Mogle, P.P., Kamble, S.S., Hebade, M.J., Ambhore, A.N., Kadam, S.N., Gacche, R.N., and Dawane, B.S., J. Chem. Pharm. Res., 2015, vol. 7, no. 7, p. 784.

    CAS  Google Scholar 

  82. Pasha, J., Kandagatla, B., Sen, S., Seerapu, G.P.K., Bujji, S., Haldar, D., Nanduri, S., and Oruganti, S., Tetrahedron Lett., 2015, vol. 56, no. 18, p. 2289. https://doi.org/10.1016/j.tetlet.2015.03.078

    Article  CAS  Google Scholar 

  83. Povarov, L.S. and Mikhailov, B.M., Bull. Acad. Sci. USSR, Div. Chem. Sci., 1963, vol. 12, p. 871. https://doi.org/10.1007/BF01134751

    Article  Google Scholar 

  84. Kouznetsov, V.V., Tetrahedron, 2009, vol. 65, no. 14, p. 2721. https://doi.org/10.1016/j.tet.2008.12.059

    Article  CAS  Google Scholar 

  85. Makioka, Y., Shindo, T., Taniguchi, Y., Takaki, K., and Fujiwara, Y., Synthesis, 1995, vol. 1995, p. 801. https://doi.org/10.1055/s-1995-4002

    Article  Google Scholar 

  86. Niu, Q., Xi, J., Li, L., Li, L., Pan, C., Lan, M., and Rong, L., Tetrahedron Lett., 2019, vol. 60, no. 43, p. 4. https://doi.org/10.1016/j.tetlet.2019.151181

    Article  CAS  Google Scholar 

  87. Mazaahir, K., Ritika, C., and Divya, B., Sci. China Chem., 2012, vol. 55, no. 10, p. 2154. https://doi.org/10.1007/s11426-012-4665-z

    Article  CAS  Google Scholar 

  88. Wu, L., Zhang, C., and Li, W., Bioorg. Med. Chem. Lett., 2014, vol. 24, no. 6, p. 1462. https://doi.org/10.1016/j.bmcl.2014.02.018

    Article  CAS  PubMed  Google Scholar 

  89. Chaskar, A., Padalkar, V., Phatangare, K., Takale, S., and Murugan, K., Green Chem. Lett. Rev., 2013, vol. 6, no. 3, p. 217. https://doi.org/10.1080/17518253.2012.739209

    Article  CAS  Google Scholar 

  90. Xia, Q., Li, C., Zhang, Y., Qi, C., and Zhang, F., ChemistrySelect, 2018, vol. 3, no. 32, p. 9232. https://doi.org/10.1002/slct.201801411

    Article  CAS  Google Scholar 

  91. Xu, Z., Du, Y., Wang, S., Wu, Z., Lou, Y., and Zhang, F., J. Heterocycl. Chem., 2019, vol. 56, no. 9, p. 2517. https://doi.org/10.1002/jhet.3646

    Article  CAS  Google Scholar 

  92. Li, C., Zhang, F., and Qi, C., Synlett, 2018, vol. 29, no. 20, p. 2707. https://doi.org/10.1055/s-0037-1609655

    Article  CAS  Google Scholar 

  93. Satasia, S.P., Kalaria, P.N., and Raval, D.K., Org. Biomol. Chem., 2014, vol. 12, p. 1751. https://doi.org/10.1039/b000000x

    Article  PubMed  Google Scholar 

  94. Li, C. and Zhang, F., ChemistrySelect, 2018, vol. 3, no. 6, p. 1815. https://doi.org/10.1002/slct.201702942

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. B. El-Nassan.

Ethics declarations

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nassan, H.B. Amberlyst 15®: An Efficient Green Catalyst for the Synthesis of Heterocyclic Compounds. Russ J Org Chem 57, 1109–1134 (2021). https://doi.org/10.1134/S1070428021070125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428021070125

Keywords:

Navigation