Skip to main content
Log in

One-pot facile synthesis of enzyme-encapsulated Zn/Co-infinite coordination polymer nanospheres as a biocatalytic cascade platform for colorimetric monitoring of bacteria viability

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A rapid method for colorimetric monitoring of bacterial viability is described. The colorimetric method was carried out based on glucose oxidase-encapsulated Zn/Co-infinite coordination polymer (Zn/Co-ICP@GOx), which was prepared in aqueous solution free of toxic organic solvents at room temperature. The Zn/Co-ICP@GOx was confirmed to be a robust sphere structure with an average diameter of 147.53 ± 20.40 nm. It integrated the catalytic activity of natural enzyme (GOx) and mimetic peroxidase (Co (П)) all in one, efficiently acting as a biocatalytic cascade platform for glucose catalytic reaction. Exhibiting good multi-enzyme catalytic activity, stability, and selectivity, Zn/Co-ICP@GOx can be used for colorimetric glucose detection. The linear range was 0.01–1.0 mmol/L, and the limit of detection (LOD) was 0.005 mmol/L. As the glucose metabolism is a common expression of bacteria, the remaining glucose can indirectly represent the bacterial viability. Hence, a Zn/Co-ICP@GOx-based colorimetric method was developed for monitoring of bacterial viability. The color was intuitively observed with the naked eye, and the bacterial viability was accurately quantified by measurement of the absorbance at 510 nm. The method was applied to determination of bacterial viability in water and milk samples with recoveries of 99.0–103% and RSD of 0.43–7.5%. The method was rapid (less than 40 min) and applicable to different bacterial species irrespective of Gram-positive and Gram-negative bacteria, providing a universal and promising strategy for real-time monitoring of bacterial viability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fukushima H, Katsube K, Hata Y, Kishi R, Fujiwara S (2007) Rapid separation and concentration of food-borne pathogens in food samples prior to quantification by viable-cell counting and real-time PCR. Appl Environ Microb 73(1):92–100. https://doi.org/10.1128/AEM.01772-06

    Article  CAS  Google Scholar 

  2. Zhang Y, Hudson-Smith NV, Frand SD, Cahill MS, Davis LS, Feng ZV, Haynes CL, Hamers RJ (2020) Influence of the spatial distribution of cationic functional groups at nanoparticle surfaces on bacterial viability and membrane interactions. J Am Chem Soc 142(24):10814–10823. https://doi.org/10.1021/jacs.0c02737

    Article  CAS  PubMed  Google Scholar 

  3. He S, Hong X, Zhang M, Wu L, Yan X (2020) Label-free detection of bacteria in fruit juice by nano-flow cytometry. Anal Chem 92(3):2393–2400. https://doi.org/10.1021/acs.analchem.9b01869

    Article  CAS  PubMed  Google Scholar 

  4. Cai X, Jiao L, Yan H, Wu Y, Gu W, Du D, Lin Y, Zhu C (2021) Nanozyme-involved biomimetic cascade catalysis for biomedical applications. Mater Today 44:211–228. https://doi.org/10.1016/j.mattod.2020.12.005

    Article  CAS  Google Scholar 

  5. Miranda OR, Li X, Garcia-Gonzalez L, Zhu Z, Yan B, Bunz UHF, Rotello VM (2011) Colorimetric bacteria sensing using a supramolecular enzyme-nanoparticle biosensor. J Am Chem Soc 133(25):9650–9653. https://doi.org/10.1021/ja2021729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang S, Xu D, Ding C, Tian Y, Ge K, Guo L, Li J, Dong Q, Huang Y, Liu Q (2020) A colorimetric immunoassay for determination of Escherichia coli O157:H7 based on oxidase-like activity of cobalt-based zeolitic imidazolate framework. Microchim Acta 187:506. https://doi.org/10.1007/s00604-020-04407-3

    Article  CAS  Google Scholar 

  7. Zhu J, Luo G, Xi X, Wang Y, Selvaraj JN, Wen W, Zhang X, Wang S (2021) Cu2+-modified hollow carbon nanospheres: an unusual nanozyme with enhanced peroxidase-like activity. Microchim Acta 188:8. https://doi.org/10.1007/s00604-020-04690-0

    Article  CAS  Google Scholar 

  8. Yao S, Li J, Pang B, Wang X, Shi Y, Song X, Xu K, Wang J, Zhao C (2020) Colorimetric immunoassay for rapid detection of Staphylococcus aureus based on etching-enhanced peroxidase-like catalytic activity of gold nanoparticles. Microchim Acta 187:504. https://doi.org/10.1007/s00604-020-04473-7

    Article  CAS  Google Scholar 

  9. Tarokh A, Pebdeni AB, Othman HO, Salehnia F, Hosseini M (2021) Sensitive colorimetric aptasensor based on g-C3N4@Cu2O composites for detection of Salmonella typhimurium in food and water. Microchim Acta 188:87. https://doi.org/10.1007/s00604-021-04745-w

    Article  CAS  Google Scholar 

  10. Imaz I, Hernando J, Ruiz-Molina D, Maspoch D (2009) Metal-organic spheres as functional systems for guest encapsulation. Angew Chem Int Ed 48(13):2325–2329. https://doi.org/10.1002/anie.200804255

    Article  CAS  Google Scholar 

  11. Huang C, Ma R, Luo Y, Shi G, Deng J, Zhou T (2020) Stimulus response of TPE-TS@Eu/GMP ICPs: toward colorimetric sensing of an anthrax biomarker with double ratiometric fluorescence and its coffee ring test kit for point-of-use application. Anal Chem 92(19):12934–12942. https://doi.org/10.1021/acs.analchem.0c01570

    Article  CAS  PubMed  Google Scholar 

  12. Zhang B, Liu B, Chen G, Tang D (2015) Redox and catalysis ‘all-in-one’ infinite coordination polymer for electrochemical immunosensor of tumor markers. Biosens Bioelectron 64:6–12. https://doi.org/10.1016/j.bios.2014.08.024

    Article  CAS  PubMed  Google Scholar 

  13. Luo S, Wang Y, Shen S (2021) IR780-loaded hyaluronic acid@gossypol-Fe(III)-EGCG infinite coordination polymer nanoparticles for highly efficient tumor photothermal/coordinated dual drugs synergistic therapy. Adv Funct Mater 31:2100954. https://doi.org/10.1002/adfm.202100954

    Article  CAS  Google Scholar 

  14. Shen S, Wu Y, Li K, Wang Y, Wu J, Zeng Y, Wu D (2018) Versatile hyaluronic acid modified AQ4N-Cu(II)-gossypol infinite coordination polymer nanoparticles: multiple tumor targeting, highly efficient synergistic chemotherapy, and real-time self-monitoring. Biomaterials 154:197–212. https://doi.org/10.1016/j.biomaterials.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  15. Tan H, Wu X, Weng Y, Lu Y, Huang Z (2020) Self-assembled FRET nanoprobe with metal-organic framework as a scaffold for ratiometric detection of hypochlorous acid. Anal Chem 92(4):3447–3454. https://doi.org/10.1021/acs.analchem.9b05565

    Article  CAS  PubMed  Google Scholar 

  16. Sun Q, Fu C, Aguila B, Perman J, Wang S, Huang H, Xiao F, Ma S (2018) Pore environment control and enhanced performance of enzymes infiltrated in covalent organic frameworks. J Am Chem Soc 140(3):984–992. https://doi.org/10.1021/jacs.7b10642

    Article  CAS  PubMed  Google Scholar 

  17. Samui A, Sahu SK (2018) One-pot synthesis of microporous nanoscale metal organic frameworks conjugated with laccase as a promising biocatalyst. New J Chem 42(6):4192–4200. https://doi.org/10.1039/C7NJ03619A

    Article  CAS  Google Scholar 

  18. Hou C, Wang Y, Ding Q, Jiang L, Li M, Zhu W, Pan D, Zhu H, Liu M (2015) Facile synthesis of enzyme-embedded magnetic metal-organic frameworks as a reusable mimic multi-enzyme system: mimetic peroxidase properties and colorimetric sensor. Nanoscale 7(44):18770–18779. https://doi.org/10.1039/C5NR04994F

    Article  CAS  PubMed  Google Scholar 

  19. Yang H, Yang R, Zhang P, Qin Y, Chen T, Ye F (2017) A bimetallic (Co/2Fe) metal-organic framework with oxidase and peroxidase mimicking activity for colorimetric detection of hydrogen peroxide. Microchim Acta 184(12):4629–4635. https://doi.org/10.1007/s00604-017-2509-4

    Article  CAS  Google Scholar 

  20. Xu W, Kang Y, Jiao L, Wu Y, Yan H, Li J, Gu W, Song W, Zhu C (2020) Tuning atomically dispersed Fe sites in metal-organic frameworks boosts peroxidase-like activity for sensitive biosensing. Nano Micro Lett 12(1):184. https://doi.org/10.1007/s40820-020-00520-3

    Article  CAS  Google Scholar 

  21. Wang C, Gao J, Cao Y, Tan H (2018) Colorimetric logic gate for alkaline phosphatase based on copper (II)-based metal-organic frameworks with peroxidase-like activity. Anal Chim Acta 1004:74–81. https://doi.org/10.1016/j.aca.2017.11.078

    Article  CAS  PubMed  Google Scholar 

  22. Zhao Z, Lin T, Liu W, Hou L, Ye F, Zhao S (2019) Colorimetric detection of blood glucose based on GOx@ZIF-8@Fe-polydopamine cascade reaction. Spectrochim Acta A 219:240–247. https://doi.org/10.1016/j.saa.2019.04.061

    Article  CAS  Google Scholar 

  23. Liao F, Lo W, Hsu Y, Wu C, Wang S, Shieh F, Morabito JV, Chou L, Wu KCW, Tsung C (2017) Shielding against unfolding by embedding enzymes in metal-organic frameworks via a de novo approach. J Am Chem Soc 139(19):6530–6533. https://doi.org/10.1021/jacs.7b01794

    Article  CAS  PubMed  Google Scholar 

  24. Wang J, Bao M, Wei T, Wang Z, Dai Z (2020) Bimetallic metal-organic framework for enzyme immobilization by biomimetic mineralization: constructing a mimic enzyme and simultaneously immobilizing natural enzymes. Anal Chim Acta 1098:148–154. https://doi.org/10.1016/j.aca.2019.11.039

    Article  CAS  PubMed  Google Scholar 

  25. Yang N, Guo K, Zhang Y, Xu C (2020) Engineering the valence state of ZIF-67 by Cu2O for efficient nonenzymatic glucose detection. J Mater Chem B 8(14):2856–2861. https://doi.org/10.1039/D0TB00094A

    Article  CAS  PubMed  Google Scholar 

  26. Zhou H, Yang D, Ivleva NP, Mircescu NE, Schubert S, Niessner R, Wieser A, Haisch C (2015) Label-free in situ discrimination of live and dead bacteria by surface-enhanced raman scattering. Anal Chem 87(13):6553–6561. https://doi.org/10.1021/acs.analchem.5b01271

    Article  CAS  PubMed  Google Scholar 

  27. Hua X, Bao Y, Wang H, Chen Z, Wu F (2017) Bacteria-derived fluorescent carbon dots for microbial live/dead differentiation. Nanoscale 9(6):2150–2161. https://doi.org/10.1039/C6NR06558A

    Article  CAS  PubMed  Google Scholar 

  28. Gahlaut SK, Kalyani N, Sharan C, Mishra P, Singh JP (2019) Smartphone based dual mode in situ detection of viability of bacteria using Ag nanorods array. Biosens Bioelectron 126:478–484. https://doi.org/10.1016/j.bios.2018.11.025

    Article  CAS  PubMed  Google Scholar 

  29. Trieu PT, Lee NY (2019) Paper-based all-in-one origami microdevice for nucleic acid amplification testing for rapid colorimetric identification of live cells for point-of-care testing. Anal Chem 91(17):11013–11022. https://doi.org/10.1021/acs.analchem.9b01263

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support of this study by grants from the National Natural Science Foundation of China (21804025), the Guangdong Provincial Natural Science Foundation of China (2018A0303130079), the Science and Technology Program of Guangzhou, China (202103000089), the Project for Innovation and Strong School of Department of Education of Guangdong Province, China (2019GCZX012), the Industry University Research Collaborative Innovation Major Projects of Guangzhou Science Technology Innovation Commission, China (201604020164), the Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, China (2017GCZX002), and the Guangdong Demonstration Base for Joint Cultivation of Postgraduates.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Bai or Jincan He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOC 66536 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, P., Yuan, P., Deng, Z. et al. One-pot facile synthesis of enzyme-encapsulated Zn/Co-infinite coordination polymer nanospheres as a biocatalytic cascade platform for colorimetric monitoring of bacteria viability. Microchim Acta 188, 322 (2021). https://doi.org/10.1007/s00604-021-04981-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04981-0

Keywords

Navigation