Skip to main content

Advertisement

Log in

Environmental controls and influences of Pinus roxburghii Sarg. (Chir pine) plantation on temporal variation in soil carbon dioxide emission and soil organic carbon stock under humid subtropical region

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil carbon dioxide emission is a major component of ecosystem respiration, responsible for organic carbon losses from the ecosystem. In Pinus roxburghii Sarg. plantations, higher CO2 emission coincided with maximum soil moisture and soil temperature during the rainy season (4.23 µmol CO2m-2 s-1) followed by summer season (1.69 µmol CO2m-2 s-1) and winter season (1.35 µmol CO2m-2 s-1). The soil CO2 emission rates recorded during the rainy season differed significantly from other seasons (p < 0.05). Multiple linear regression revealed that rainfall was the main dominant factor affecting the soil CO2 emission. A significant positive correlation with minimum air temperature and average air temperature during the lag period, i.e., preceding 15 days of data, was recorded. A significant positive correlation was also observed between annual soil CO2 emission rates with soil temperature, soil moisture, air temperature, and rainfall (p < 0.05). Vapor pressure and relative humidity at 14.19 h also emerged as additional scientific variables affecting soil CO2 emission with significant positive correlations. Annual soil CO2 emission rates and soil properties were not significantly correlated but were positively correlated with organic carbon, exchangeable potassium and negatively correlated with available nitrogen and phosphorous (p > 0.05). Higher annual average carbon stock, 95.05 t ha-1 in P. roxburghii plantations than the yearly soil CO2 emission, 33.23 t ha-1 indicates that plantations sequester more carbon than the emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Allison, F. A. (1973). Soil organic matter and its role in crop production (p. 637). Elsevier

    Google Scholar 

  • Andrews, J. A., Matamalaa, R., Westovera, K. M., & Schlesinger, W. H. (2000). Temperature effects on the diversity of soil heterotrophs and the d13C of soil-respired CO2. Soil Biology and Biochemistry, 32, 699–706

    Article  CAS  Google Scholar 

  • Bijracharya, R. M., Lal, R., & Kimble, J. M. (2000). Diurnal and seasonal CO2-C flux from soil as related to erosion phases in Central Ohio. Soil Science Society of American Journal, 64, 286–293

    Article  Google Scholar 

  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analysis of soils. Agronomy Journal, 54, 464–465

    Article  Google Scholar 

  • Bowling, D. R., Grote, E. E., & Belnap, J. (2011). Rain pulse response ofsoil CO2 exchange by biological soil crusts and grasslands of the semi arid Colorado Plateau, United States. Journal of Geophysical Research, 116, 3–28. https://doi.org/10.1029/2011JG001643retrievedon30.05.2019

    Article  Google Scholar 

  • Brady, N. C. (1984). The nature and properties of soils (9th ed., p. 750). Macmillan Publishing Company

    Google Scholar 

  • Bray, R. H., & Kurtz, L. T. (1945). Soil-phosphorus extraction methodologies: A review. African Journal of Agricultural Research, 1, 159–161

    Google Scholar 

  • Buchmann, N. (2000). Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology and Biochemistry, 32, 1625–1635

    Article  CAS  Google Scholar 

  • Burton, A. J., Jarvey, J. C., Jarvi, M. P., Zak, D. R., & Pregitzer, K. S. (2012). Chronic N deposition alters root respiration-tissue N relationship in northern hardwood forests. Global Change Biology, 18(1), 258–266

    Article  Google Scholar 

  • Chambers, J. Q., Tribuzy, E. S., Toledo, L. C., Crispim, B. F., Higuchi, N., Dos Santos, J., & Trumbore, S. E. (2004). Respiration from a tropical forest ecosystem: Partitioning of sources and low carbon use efficiency. Ecological Applications, 14, 72–88

    Article  Google Scholar 

  • Chauhan, S. K., Saini, K. S., Saralch, H. S., Rani, S., & Verma, A. (2015). Wheat and barley crop performance under different sowing methods under poplar based agroforestry system. Indian Journal of Ecology, 42(2), 528–530

    Google Scholar 

  • Chauhan, S. K., Singh, S., Sharma, S., Sharma, R., & Saralch, H. S. (2019). Tree biomass and carbon sequestration in four short rotation tree plantations. Range Management and Agroforestry, 40(1), 77–82

    Google Scholar 

  • Chen, B., Liu, S., Ge, J., & Chu, J. (2010a). Annual and seasonal variations of Q10 soil respiration in the sub-alpine forests of the Eastern Qinghai-Tibet Plateau, China. Soil Biology and Biochemistry, 42, 1735–1742

    Article  CAS  Google Scholar 

  • Chen, S. T., Huang, Y., Zou, J. W., Shen, Q. R., Hu, Z. H., Qi, Y. M., Chen, H. S., & Pan, G. X. (2010b). Modeling inter annual variability of global soil respiration from climate and soil properties. Agricultural and Forest Meteorology, 150, 590–605

    Article  Google Scholar 

  • Chen, W. (2013). Soil respiration in a mixed urban forest in China in relation to soil temperature and water content. European Journal of Soil Biology, 54, 63–68

    Article  CAS  Google Scholar 

  • Curiel-Yuste, I., Baldocchi, D. D., Gershenson, A., & Goldstein, A. (2007). Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Global Change Biology, 13, 1–18. https://doi.org/10.1111/j.1365-2486.2007.01415.xretrievedon30.05.2019

    Article  Google Scholar 

  • Curtin, D., Wang, H., Selles, F., McConkey, B. G., & Campbell, C. A. (2000). Tillage effects on carbon fluxes in continuous wheat and fallow-wheat rotations. Soil Science Society of America Journal, 64, 2080–2086

    Article  CAS  Google Scholar 

  • Devi, N. B., & Yadava, P. S. (2009). Emission of CO2 from the soil and immobilization of carbon in microbes in a sub-tropical mixed oak forest ecosystem, Manipur, NE India. Current Science, 96, 1627–1630.

    CAS  Google Scholar 

  • Drake, J. E., Stoy, P. C., Jackson, R. B., & DeLUCIA, E. H. (2008). Fine‐root respiration in a loblolly pine (Pinus taeda L.) forest exposed to elevated CO2 and N fertilization. Plant, Cell & Environment31(11), 1663–1672

  • Fang, C., & Moncrieff, J. B. (1998). Simple and fast technique to measure CO2 profiles in soil. Soil Biology and Biochemistry, 30, 2107–2112

    Article  CAS  Google Scholar 

  • Gong, J. R., Wang, Y. H., Liu, M., Huang, Y. M., Yan, X., Zhang, Z. Y., & Zhang, W. (2014). Effects of land use on soil respiration in the temperate steppe of Inner Mongolia, China. Soil Tillage Research, 144, 20–31

    Article  Google Scholar 

  • Goulden, M. L., Munger, J. W., Fan, S.-M., Daube, B. C., & Wofsy, S. C. (1996). Exchange of carbon dioxide by a deciduous forest: Response to inter annual climate variability. Science, 271, 1576–1578

    Article  CAS  Google Scholar 

  • Grace, P. R., Ladd, J. N., Robertson, G. P., & Gage, S. H. (2006). SOCRATES – a simple model for predicting long-term changes in soil organic carbon in terrestrial ecosystems. Soil Biology and Biochemistry, 38(5), 1172–1176

    Article  CAS  Google Scholar 

  • Gupta, M. K., & Sharma, S. D. (2011). Sequestrated carbon: Organic carbon pool in the soils under different forest covers and land uses in Garhwal Himalayan region of India. International Journal of Agriculture and Forestry, 1(1), 14–20

    Article  Google Scholar 

  • Gupta, S. R., & Singh, J. S. (1977). Effect of alkali concentration, volume and absorption area on the measurement of soil respiration in a tropical sward. Pedobiologia, 17, 233–239

    CAS  Google Scholar 

  • Han, G., Zhou, G., Xu, Z., Yang, Y., Liu, J., & Shi, K. (2007). Biotic and abiotic factors controlling the spatial and temporal variation of soil respiration in an agricultural ecosystem. Soil Biology and Biochemistry, 39, 418–425

    Article  CAS  Google Scholar 

  • Han, T. F., Zhou, G. Y., Li, Y. L., Liu, J. X., & Zhang, D. Q. (2011). Partitioning soil respiration in lower subtropical forests at different successional stages in southern China. Chinese Journal of Plant Ecology, 35(9), 946

    Article  Google Scholar 

  • Hanson, P. J., Edwards, N. T., Garten, C. T., & Andrews, J. A. (2000). Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry, 48, 115–146

    Article  CAS  Google Scholar 

  • Hanway, J. J., & Heidel, H. (1952). Soil analysis methods as used in Iowa State College. Soil Testing Laboratory, Iowa State College Bull, 57, 1–131

    Google Scholar 

  • Hogberg, P., Nordgren, A., Buchmann, N., Taylor, A. F., Ekblad, A., Hogberg, M. N., & Read, D. J. (2001). Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature, 411(6839), 789–792

    Article  CAS  Google Scholar 

  • IPCC. (2003). Good practice guidance for land use, landuse change and forestry. In J. Penman, M. Gytarsky, T. Hiraishi, T. Krug, D. Kruger, R. Pipatti, L. Buendia, K. Miwa, T. Ngara, K. Tanabe, & F. Wagner (Eds.). IPCC/OECD/IEA/IGES, Hayama, Japan. ISBN 4-88788-003-0. 

  • Jackson, M. L. (1973). Soil chemical analysis. Prentice-Hall of India Pvt. Ltd

    Google Scholar 

  • Janssens, I. A., Lankreijer, H., Matteucci, G., Kowalski, A. S., Buchmann, N., Epron, D., Pilegaard, K., Kutsch, W., Longdoz, B., Grunwald, T., Montagnani, L., Dore, S., Rebmann, C., Moors, E. J., Grelle, A., Rannik, U., Morgenstern, K., Oltchev, S., Clement, R., Guðmundsson, J., Minerbi, S., Berbigier, P., Ibrom, A., Moncrieff, J., Aubinet, M., Bernhofer, C., Jensen, N.O., Vesala, T., Granier, A., Schulze, E.D., Lindroth, A., Dolman, A.J., Jarvis, P.G., Ceulemans, R., & Valentini, R. (2001). Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biology, 7, 269–278

  • Johnston, A. E. (1986). Soil organic matter, effects on soil and crops. Soil Use andManagement, 2(3), 97–105

    Article  Google Scholar 

  • Joshi, M., Mer, G. S., Singh, S. P., & Rawat, Y. S. (1991). Seasonal pattern of total soil respiration in undisturbed and disturbed ecosystems of Central Himalaya. Biology and Fertility of Soils, 11(4), 267–272

    Article  Google Scholar 

  • Kirschbaum, M. (1995). The temperature dependence of soil organic matter decomposition and the effect of global warming on soil organic carbon storage. Soil Biology and Biochemistry, 27, 753–760

    Article  CAS  Google Scholar 

  • Kosugi, Y. (2007). Spatial and temporal variation in soil respiration in a Southeast Asian tropical rainforest. Agricultural and Forest Meteorology, 147, 35–47

    Article  Google Scholar 

  • Kowalenko, C. G., & Ivarson, K. C. (1978). Effect of moisture content, temperature and nitrogen fertilization on carbon dioxide evolution from field soils. Soil Biology and Biochemistry, 10, 417–423

    Article  CAS  Google Scholar 

  • Kutsch, W. L., & Kappen, L. (1997). Aspects of carbon and nitrogen cycling in soils of the Bornhoved Lake district, II, Modeling the influence of temperature increase on soil respiration and organic carbon content in arable soils under different managements. Biogeochemistry, 39, 207–224

    Article  Google Scholar 

  • Laishram, I. D., Yadava, P. S., & Kakati, L. N. (2002). Soil respiration in a mixed oak forest ecosystem at Shiroy Hills, Manipur in North Eastern India. International Journal of Ecology and Environmental Sciences, 28, 133–137

    Google Scholar 

  • Lee, X., Wu, H. W., Sigler, J., Oishi, C., Siccama, T., & Haven, N. (2004). Rapid and transient response of soil respiration to rain. Global Change Biology, 10, 1017–1026

    Article  Google Scholar 

  • Litton, C. M., Raich, J. W., & Ryan, M. G. (2007). Carbon allocation in forest ecosystems. Global Change Biology, 13(10), 2089–2109

    Article  Google Scholar 

  • Liu, J., Jiang, P. K., Wang, H. L., Zhou, G. M., Wu, J. S., Yang, F., & Qian, X. B. (2011). Seasonal soil CO2 efflux dynamics after land use change from a natural forest to Moso bamboo plantations in subtropical China. Forest Ecology and Management, 262, 1131–1137. https://doi.org/10.1016/j.foreco.2011.06.015retrievedon30.05.2019

    Article  Google Scholar 

  • Longdoz, B., Yernaux, M., & Aubinet, M. (2000). Soil CO2 efflux measurements in a mixed forest: Impact of chamber disturbances, spatial variability and seasonal evolution. Global Change Biology, 6, 907–917

    Article  Google Scholar 

  • Malhi, Y., Doughty, C., & Galbraith, D. (2011). The allocation of ecosystem net primary productivity in tropical forests. Philosophical Transactions of the Royal Society b: Biological Sciences, 366, 3225–3245

    Article  CAS  Google Scholar 

  • Mitra, A., Bagchi, J., Thakur, S., Parkhi, U., Debnath, S., Pramanick, P., & Zaman, S. (2015). Carbon sequestration in Bhubaneswar City of Odisha, India. International Journal of Innovative Research in Science, Engineering and Technology, 4(8), 6942–6947

    Google Scholar 

  • Mo, W., Lee, M. S., Uchida, M., Inatomi, M., Saigusa, N., Mariko, S., & Koizumi, H. (2005). Seasonal and annual variations in soil respiration in a cool–temperate deciduous broadleaved forest in Japan. Agricultural and Forest Meteorology, 134, 81–94

    Article  Google Scholar 

  • Moore, T. R., & Dalva, M. (1997). Methane and carbon dioxide exchange potentials of peat soils in aerobic and anaerobic laboratory incubations. Soil Biology and Biochemistry, 29, 1157–1164

    Article  CAS  Google Scholar 

  • Pacific, V. J., McGlynn, B. L., Riveros-Iregui, D. A., Welsch, D. L., & Epstein, H. E. (2008). Variability in soil respiration across riparian-hill slope transitions. Biogeochemistry, 91, 51–70. https://doi.org/10.1007/s10533-008-9258-8retrievedon30.05.2019

    Article  CAS  Google Scholar 

  • Parkin, T. B., & Kaspar, T. C. (2003). Temperature controls on diurnal carbon dioxide flux: Implications for estimating soil carbon loss. Soil Science Society of America Journal, 67, 1763–1772

    Article  CAS  Google Scholar 

  • Paudel, S., & Sah, J. P., (2003). Physiochemical characteristics of soil in tropical sal (Shorea robusta Gaertn.) forests in eastern Nepal. Himalayan Journal of Sciences, 1(2), 107–110

  • Paul, E. A., Harris, D., Collins, H. P., Schulthess, U., & Robertson, G. P. (1999). Evolution of CO2 and soil carbon dynamics in biologically managed, row-crop agroecosystems. Applied Soil Ecology, 11(1), 53–65.

    Article  Google Scholar 

  • Piao, H. C., Wu, Y. Y., Hong, Y. T., & Yuan, Z. Y. (2000). Soil-released carbon dioxide from microbial biomass carbon in the cultivated soils of karst areas of southwest China. Biology and Fertility of Soils, 31, 422–426

    Article  CAS  Google Scholar 

  • Raich, J. W., & Schlesinger, W. H. (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus Series B Chemical and Physical Meteorology, 44, 81–99

    Article  Google Scholar 

  • Raich, J. W., & Tufekciogul, A. (2000). Vegetation and soil respiration: Correlations and controls. Biogeochemistry, 48(1), 71–90

    Article  CAS  Google Scholar 

  • Rao, D. L. N., & Pathak, H. (1996). Ameliorative influence of organic matter on biological activity of salt-affected soils. Arid Soil Research and Rehabilitation, 10, 311–319

    Article  CAS  Google Scholar 

  • Rayment, M. B., & Jarvis, P. G. (2000). Temporal and spatial variation of soil CO2 efflux in a Canadian boreal forest. Soil Biology and Biochemistry, 32, 35–45

    Article  CAS  Google Scholar 

  • Reeves, D. W. (1997). The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil and Tillage Research, 43(1–2), 131–167

    Article  Google Scholar 

  • Rey, A., Pegoraro, E., Tedeschi, V., Parri, I. D., & Jarvis, P. G. (2002). Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. Global Change Biology, 8, 851–866

    Article  Google Scholar 

  • Reynolds, S. G. (1970). The gravimetric method of soil moisture determination PART- I A Study of Equipment and Methodological Problems. Journal of Hydrology, 11, 258–273

    Article  Google Scholar 

  • Riveros-Iregui, D. A., Emanuel, R. E., Muth, D. J., McGlynn, B. L., Epstein, H. E., Welsch, D. L., Pacific, V. J., & Wraith, J. M. (2007). Diurnal hysteresis between soil CO2 and soil temperature is controlled by soil water content. Geophysical Research Letters, 34, L17404. https://doi.org/10.1029/2007GL030938retrievedon30.05.2019

    Article  Google Scholar 

  • Rodeghiero, M., & Cescatti, A. (2005). Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps. Global Change Biology, 11, 1024–1041

    Article  Google Scholar 

  • Roy, S., & Singh, J. S. (1995). Seasonal and spatial dynamics of plant available N and P pools and N-mineralization in relation to fine roots in a dry tropical forest habitat. Soil Biology and Biochemistry, 27(1), 33–40

    Article  CAS  Google Scholar 

  • Sainju, U. M., Jabro, J. D., & Stevens, W. B. (2006). Soil carbon dioxide emission as influenced by irrigation, tillage, cropping system, and nitrogen fertilization. In workshop on Agricultural Air Quality: State of Science (pp. 1086-1098). Potomac, MD.

  • Saiz, G., Byrne, K., Butterbach-Bahl, K., Kiese, R., Blujde, V., & Farrell, E. (2006). Stand age-related effects on soil respiration in a first rotation Sitka spruce chronosequence in Ireland. Global Change Biology, 12, 1007–1020

    Article  Google Scholar 

  • Singh, J. S., & Gupta, S. R. (1977). Plant decomposition and soil respiration in terrestrial ecosystems. The Botanical Review, 43(4), 449–528

    Article  CAS  Google Scholar 

  • Sivaranjani, S., & Panwar, V. P. (2020). An ecological appraisal of Pinus roxburghii (chirpine) and Shorea robusta (sal) plantations in Doon valley. Indian Journal of Forestry, 43(2), 183–190

    Google Scholar 

  • Stoyan, H., DePolli, H., Bohm, S., Robertson, G. P., & Paul, E. E. (2000). Spatial heterogeneity of soil respiration and related properties at the plant scale. Plant and Soil, 222, 203–214

    Article  CAS  Google Scholar 

  • Subbiah, B. V., & Asija, G. L. (1956). A rapid procedure for the determination of available nitrogen in soils. Current Science, 25, 259–260

    CAS  Google Scholar 

  • Takahashi, M. (2011). Topographic variation in heterotrophic and autotrophic soil respiration in a tropical seasonal forest in Thailand. Soil Sciene and Plant Nutrition, 57, 452–465

    Article  Google Scholar 

  • Teepe, R., Dilling, H., & Beese, F. (2003). Estimating water retention curves of forest soils from soil texture and bulk density. Journal of Plant Nutrition and Soil Science, 166, 111–119. https://doi.org/10.1002/jpln.200390001retrievedon30.05.2019

    Article  CAS  Google Scholar 

  • Tewary, C. K., Pandey, U., & Singh, J. S. (1982). Soil and litter respiration rates in different microhabitats of a mixed oak-conifer forest and their control by edaphic conditions and substrate quality. Plant and Soil, 65(2), 233–238

    Article  Google Scholar 

  • Thokchom, A., & Yadav, P. S. (2014). Soil CO2 flux in the different ecosystems of North East India. Current Science, 107, 99–105

    CAS  Google Scholar 

  • Unger, S., Máguas, C., Pereira, J. S., David, T. S., & Werner, C. (2010). The influence of precipitation pulses on soil respiration – assessing the “Birch effect” by stable carbon isotopes. Soil Biology and Biochemistry, 42, 1800–1810

    Article  CAS  Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–37

    Article  CAS  Google Scholar 

  • Wang, X., Piao, S., Ciais, P., Janssens, I. A., Reichstein, M., Peng, S., & Wang, T. (2010). Are ecological gradients in seasonal Q10 of soil respiration explained by climate or by vegetation seasonality? Soil Biology and Biochemistry, 42, 1728–1734

    Article  CAS  Google Scholar 

  • Wilde, S. A., Voigt, G. K., & Iyer, J. G. (1964). Soil and plant analysis for tree culture (3rd ed., p. 209). Oxford Publishing House

    Google Scholar 

  • Wofsy, S. C., Goulden, M. L., Munger, J. W., Fan, S.-M., Bakwin, P. S., Daube, B. C., Bassow, S. L., & Bazzaz, F. A. (1993). Net exchange of CO2 in a mid-latitude forest. Science, 260, 1314–1317

    Article  CAS  Google Scholar 

  • Xia, J. Y., & Wan, S. Q. (2008). Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist, 179, 428–439

    Article  CAS  Google Scholar 

  • Xiaolu, T., Shaohui, F., Lianghua, Q., Fengying, G., Manyi, D., & Hua, Z. (2016). Soil respiration and net ecosystem production in relation to intensive management in Moso bamboo forests. CATENA, 137, 219–228

    Article  Google Scholar 

  • Xu, Z. B., Jiang, C. S., Haq, Q. J., & Liu, Z. X. (2012). Soil respiration and its influencing factors in rice-rape rotation fields during rape growing season. Chinese Journal of Eco-Agriculture, 20, 1599–1605

    Article  CAS  Google Scholar 

  • Yohannes, Y., Shibistova, O., Abate, A., Fetine, M., & Guggenberger, G. (2011). Soil CO2 efflux in an Afromontane forest of Ethiopia as driven by seasonality and tree species. Forest Ecology and Management, 261, 1090–1098

    Article  Google Scholar 

  • Yu, X., Zha, T., Pang, Z., Wu, B., Wang, X., Chen, G., Li, C., Cao, J., Jia, G., & Li, X. (2011). Response of soil respiration to soil temperature and moisture in a 50-year-old oriental arborvitae plantation in China. PLoS ONE, 6, e28397. https://doi.org/10.1371/journal.pone.0028397retrievedon30.05.2019

    Article  CAS  Google Scholar 

  • Zhou, G. M., Xu, J. M., & Jiang, P. K. (2006). Effect of management practices on seasonal dynamics of organic carbon in soils under bamboo plantations. Pedosphere, 16, 525–531

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Science and Technology, Government of India, to award INSPIRE-Fellowship (grant ref. No. DST/INSPIRE Fellowship/2016/IF160625) to the first author. The authors are also highly thankful for the valuable guidance and suggestions from Dr. M.K. Gupta, Ex-Head, Forest Soil and Land Reclamation Division, Forest Research Institute, Dehradun and Sh. Raman Nautiyal, Head Statistics (Retd.), Indian Council of Forestry Research and Education, Dehradun, India.

Author information

Authors and Affiliations

Authors

Contributions

Sivaranjani S: conceptualization, investigation, formal analysis, writing—original draft, writing—review and editing, data curation. Vijender Pal Panwar: methodology, supervision, Formal analysis, writing—review and editing.

Corresponding author

Correspondence to Vijender Pal Panwar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivaranjani, S., Panwar, V.P. Environmental controls and influences of Pinus roxburghii Sarg. (Chir pine) plantation on temporal variation in soil carbon dioxide emission and soil organic carbon stock under humid subtropical region. Environ Monit Assess 193, 630 (2021). https://doi.org/10.1007/s10661-021-09419-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09419-x

Keywords

Navigation