Skip to main content

Advertisement

Log in

Characterization and Kinetics of Chromium Carbide Coatings on AISI O2 Tool Steel Performed by Pack Cementation

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Chromium carbide coatings were grown on AISI O2 cold work tool steel via pack cementation method at the temperature of 900, 1000, and 1100 °C for 4, 6, 8h. The resulting coatings were examined using light microscopy LM, scanning electron microscopy/energy dispersive spectroscopy SEM/EDS, and X-ray diffraction XRD characterization techniques. The process produced chromium carbide coatings on a substrate with a thickness of up to 50 µm. The results indicated that the phase and layer thickness of the chromium coatings are highly dependent on the holding time and temperature. At low temperature (900 °C), the carbides coating appeared as one layer mainly consisting of Cr7C3 phase with thickness up to 13 µm. As the temperature rises to 1000 and 1100 °C, the carbides coating becomes two sublayers mainly consisting of Cr7C3 and Cr23C6 phases with thickness up to 50 µm. The microhardness value of the coating reached 1750 ± 45 HV0.05 (17.16 GPa), which was higher than the 291 ± 2 HV0.05 and 632 ± 4 HV0.05 for the uncoated/annealed and the quench/tempered specimens, respectively. The activation energy for the process is 187 kJ/mol, and the kinetics of chromizing coating by pack cementation method revealed a parabolic relationship between carbide layer thickness and treatment time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Biesuz and V.M. Sglavo, Chromium and Vanadium Carbide and Nitride Coatings Obtained by TRD Techniques on UNI 42CrMoS4 (AISI 4140) Steel, Surf. Coat. Technol., 2016 https://doi.org/10.1016/j.surfcoat.2015.12.063

    Article  Google Scholar 

  2. X. Su, S. Zhao, H. Sun, X. Yang, P. Zhang and L. Xie, Chromium Carbide Coatings Produced on Ductile Cast Iron QT600-3 by Thermal Reactive Diffusion in Fluoride Salt Bath: Growth Behavior, Microstructure Evolution and Kinetics, Ceram. Int., 2019 https://doi.org/10.1016/j.ceramint.2018.09.304

    Article  Google Scholar 

  3. A. Michau, F. Maury, F. Schuster, R. Boichot, M. Pons and E. Monsifrot, Chromium Carbide Growth at Low Temperature by a Highly Efficient DLI-MOCVD Process in Effluent Recycling Mode, Surf. Coat. Technol., 2017 https://doi.org/10.1016/j.surfcoat.2017.06.077

    Article  Google Scholar 

  4. F. Castillejo, J. Olaya and J. Alfonso, Wear and Corrosion Resistance of Chromium-Vanadium Carbide Coatings Produced via Thermo-Reactive Deposition, Coatings, 2019 https://doi.org/10.3390/coatings9040215

    Article  Google Scholar 

  5. K. Korkmaz, Investigation and Characterization of Electrospark Deposited Chromium Carbide-Based Coating on the Steel, Surf. Coat. Technol., 2015 https://doi.org/10.1016/j.surfcoat.2015.04.033

    Article  Google Scholar 

  6. K. Nygren, M. Samuelsson, A. Flink, H. Ljungcrantz, Å. Kassman Rudolphi and U. Jansson, Growth and Characterization of Chromium Carbide Films Deposited by High Rate Reactive Magnetron Sputtering for Electrical Contact Applications, Surf. Coat. Technol., 2014 https://doi.org/10.1016/j.surfcoat.2014.06.069

    Article  Google Scholar 

  7. C. Zhang et al., The Microstructure and Properties of Nanostructured Cr-Al Alloying Layer Fabricated by High-Current Pulsed Electron Beam, Vacuum, 2019 https://doi.org/10.1016/j.vacuum.2019.06.022

    Article  Google Scholar 

  8. C. Zhang et al., The Impact of High Current Pulses Electron Beam on the Microstructure and Surface Properties of Sn/Al System, J. Alloys Compd., 2021 https://doi.org/10.1016/j.jallcom.2020.157980

    Article  Google Scholar 

  9. P. Lyu et al., Microstructure and Properties of CoCrFeNiMo0.2 High-Entropy Alloy Enhanced by High-Current Pulsed Electron Beam, Surf. Coat. Technol., 2021 https://doi.org/10.1016/j.surfcoat.2021.126911

    Article  Google Scholar 

  10. C.C. Lin, W.J. Hsieh, J.H. Lin, U.S. Chen, X.J. Guo and H.C. Shih, Formation and Characterization of Chromium Carbide Films Deposited Using a 90° Bend Magnetic Filtered Cathodic Vacuum Arc System, Surf. Coat. Technol., 2006 https://doi.org/10.1016/j.surfcoat.2005.05.027

    Article  Google Scholar 

  11. M.A. Elhelaly, M.A. ElZomor, M.H. Ahmed and A.O. Youssef, Effect of Zirconium Addition on High-Temperature Cyclic Oxidation of Diffusion Chromo-Aluminized Ni-Base Superalloy, Oxid. Met., 2019 https://doi.org/10.1007/s11085-018-9871-4

    Article  Google Scholar 

  12. F.A.P. Fernandes, S.C. Heck, C.A. Picon, G.E. Totten and L.C. Casteletti, Wear and Corrosion Resistance of Pack Chromised Carbon Steel, Surf. Eng., 2012 https://doi.org/10.1179/1743294411Y.0000000079

    Article  Google Scholar 

  13. C. Sun, Q. Xue, J. Zhang, S. Wan, A.K. Tieu and B.H. Tran, Growth Behavior and Mechanical Properties of Cr-V Composite Surface Layer on AISI D3 Steel by Thermal Reactive Deposition, Vacuum, 2018 https://doi.org/10.1016/j.vacuum.2017.11.015

    Article  Google Scholar 

  14. G. Khalaj and H. Pouraliakbar, Computer-Aided Modeling for Predicting Layer Thickness of a Duplex Treated Ceramic Coating on Tool Steels, Ceram. Int., 2014 https://doi.org/10.1016/j.ceramint.2013.10.141

    Article  Google Scholar 

  15. A. OrjuelaG, R. Rincón and J.J. Olaya, Corrosion Resistance of Niobium Carbide Coatings Produced on AISI 1045 Steel Via Thermo-Reactive Diffusion Deposition, Surf. Coat. Technol., 2014 https://doi.org/10.1016/j.surfcoat.2014.10.012

    Article  Google Scholar 

  16. Z.D. Xiang and P.K. Datta, Relationship Between Pack Chemistry and Aluminide Coating Formation for Low-Temperature Aluminisation of alloy Steels, Acta Mater., 2006 https://doi.org/10.1016/j.actamat.2006.05.032

    Article  Google Scholar 

  17. S.C. Kung and R.A. Rapp, Kinetic Study of Aluminization of Iron by Using the Pack Cementation Technique, J. Electrochem. Soc., 1988 https://doi.org/10.1149/1.2095732

    Article  Google Scholar 

  18. G. Khalaj, A. Nazari, S.M.M. Khoie, M.J. Khalaj and H. Pouraliakbar, Chromium Carbonitride Coating Produced on DIN 1.2210 Steel by Thermo-Reactive Deposition Technique: Thermodynamics, Kinetics and Modeling, Surf. Coat. Technol., 2013 https://doi.org/10.1016/j.surfcoat.2013.02.030

    Article  Google Scholar 

  19. S. Sen, A Study on Kinetics of CrxC-coated High-Chromium Steel by Thermo-Reactive Diffusion Technique, Vacuum, 2005 https://doi.org/10.1016/j.vacuum.2005.01.009

    Article  Google Scholar 

  20. R. Soltani, M.H. Sohi, M. Ansari, A. Haghighi, H.M. Ghasemi and F. Haftlang, Evaluation of Niobium Carbide Coatings Produced on AISI L2 Steel Via Thermo-Reactive Diffusion Technique, Vacuum, 2017 https://doi.org/10.1016/j.vacuum.2017.09.023

    Article  Google Scholar 

  21. D. Nam, J. Do and S. Lee, Improvement of Hardness and Fracture Toughness of Surface Composites Fabricated by High-Energy Electron-Beam Irradiation with Fe-Alloy Powders and VC Powders, Scr. Mater., 2009 https://doi.org/10.1016/j.scriptamat.2008.12.055

    Article  Google Scholar 

  22. T. Arai, Behavior of Nucleation and Growth of Carbide Layers on Alloyed Carbide Particles in Substrates in Salt Bath Carbide Coating, Thin Solid Films, 1993 https://doi.org/10.1016/0040-6090(93)90360-2

    Article  Google Scholar 

  23. B. Kurt, Y. Küçük and M. Sabri Gök, Microabrasion Wear Behavior of VC and CrC Coatings Deposited by Thermoreactive Diffusion Technique, Tribol. Trans., 2014 https://doi.org/10.1080/10402004.2014.880538

    Article  Google Scholar 

  24. L. Aissani, M. Fellah, L. Radjehi, C. Nouveau, A. Montagne and A. Alhussein, Effect of Annealing Treatment on the Microstructure, Mechanical and Tribological Properties of Chromium Carbonitride Coatings, Surf. Coat. Technol., 2019 https://doi.org/10.1016/j.surfcoat.2018.12.099

    Article  Google Scholar 

  25. Z. Glowacki and W. Kaluba, On Some Features of Chromium Carbide Diffusion Layer Formation, Metall. Trans. A, 1982 https://doi.org/10.1007/BF02642388

    Article  Google Scholar 

  26. X. Su et al., Formation of Chromium Carbide Coatings on HT250 Steel by Thermal Diffusion Processes in Fluoride Molten Salt Bath, Vacuum, 2018 https://doi.org/10.1016/j.vacuum.2018.06.015

    Article  Google Scholar 

  27. K. Wieczerzak et al., The Effect of Temperature on the Evolution of Eutectic Carbides and M7C3 → M23C6carbides Reaction in the Rapidly Solidified Fe-Cr-C Alloy, J. Alloys Compd., 2017 https://doi.org/10.1016/j.jallcom.2016.12.252

    Article  Google Scholar 

  28. F.E. Castillejo, D.M. Marulanda, J.J. Olaya and J.E. Alfonso, Wear and Corrosion Resistance of Niobium-Chromium Carbide Coatings on AISI D2 Produced Through TRD, Surf. Coat. Technol., 2014 https://doi.org/10.1016/j.surfcoat.2014.05.069

    Article  Google Scholar 

  29. M. Kolnes, J. Pirso, J. Kübarsepp, M. Viljus and R. Traksmaa, Structure Formation and Characteristics of Chromium Carbide–Iron–Titanium Cermets, Proc. Est. Acad. Sci., 2016 https://doi.org/10.3176/proc.2016.2.09

    Article  Google Scholar 

  30. K. Hirota, K. Mitani, M. Yoshinaka and O. Yamaguchi, Simultaneous Synthesis and Consolidation of Chromium Carbides (Cr3C2, Cr7C3 and Cr23C6) By Pulsed Electric-Current Pressure Sintering, Mater. Sci. Eng. A, 2005 https://doi.org/10.1016/j.msea.2005.02.062

    Article  Google Scholar 

  31. J. Esteve, J. Romero, M. Gómez and A. Lousa, Cathodic Chromium Carbide Coatings for Molding Die Applications, Surf. Coat. Technol., 2004 https://doi.org/10.1016/j.surfcoat.2004.08.064

    Article  Google Scholar 

  32. M. A. S. Bin Abdul Rahim, M. Bin Minhat, N. I. S. B. Hussein, and M. S. Bin Salleh, , A Comprehensive Review on Cold Work of AISI D2 Tool Steel, Metal. Res. Technol., 2018 https://doi.org/10.1051/metal/2017048

    Article  Google Scholar 

  33. Y. Li et al., The Electronic, Mechanical Properties and Theoretical Hardness of Chromium Carbides by First-Principles Calculations, J. Alloys Compd., 2011 https://doi.org/10.1016/j.jallcom.2011.02.009

    Article  Google Scholar 

  34. Z.J. Shan, Z.G. Pang, F.Q. Luo and F.D. Wei, Kinetics of V(N, C) and Nb(N, C) Coatings Produced by V-Nb-RE Deposition Technique, Surf. Coat. Technol., 2012 https://doi.org/10.1016/j.surfcoat.2012.04.057

    Article  Google Scholar 

  35. N. Zhao, Y. Xu, J. Wang, L. Zhong, V.E. Ovcharenko and X. Cai, Microstructure and Kinetics Study on Tantalum Carbide Coating Produced on Gray Cast Iron In Situ, Surf. Coat. Technol., 2016 https://doi.org/10.1016/j.surfcoat.2015.12.057

    Article  Google Scholar 

  36. H. Pouraliakbar, G. Khalaj, L. Gomidželović, M.J. Khalaj and M. Nazerfakhari, Duplex Ceramic Coating Produced by Low Temperature Thermo-Reactive Deposition and Diffusion on the Cold Work Tool Steel Substrate: Thermodynamics, Kinetics and Modeling, Ceram. Int., 2015 https://doi.org/10.1016/j.ceramint.2015.03.306

    Article  Google Scholar 

  37. M. Aghaie-Khafri and F. Fazlalipour, Kinetics of V(N, C) Coating Produced by a Duplex Surface Treatment, Surf. Coat. Technol., 2008 https://doi.org/10.1016/j.surfcoat.2008.02.027

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Elhelaly.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elhelaly, M.A., El-Zomor, M.A., Attia, M.S. et al. Characterization and Kinetics of Chromium Carbide Coatings on AISI O2 Tool Steel Performed by Pack Cementation. J. of Materi Eng and Perform 31, 365–375 (2022). https://doi.org/10.1007/s11665-021-06211-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06211-3

Keywords

Navigation