Skip to main content

Advertisement

Log in

An improved UK-DNDC model for evaluations of soil temperature and nitrous oxide emissions from Canadian agriculture

  • Manuscript
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

UK-DNDC model was modified to (1) enhance the estimates of soil temperature and N2O emissions in Denitrification Decomposition (DNDC) model by considering snow melt and frozen and unfrozen conditions along with the impacts of water flux density, thermal diffusivity, crop-canopy, snowmelt routine and snow-depth on N2O emission and (2) validate the modified DNDC model against measured data from five experimental cropping sites located in the west Canada.

Methods

Heat transfer processes and snowmelt routine of the DNDC have been modified to account for soil heat and water fluxes driven by snowmelt routine and their effects on denitrification and N2O emissions. The modified DNDC model was tested against the data from five sites, Canada. Then, the model was used to predict the spatial and temporal change of snowpack depth, soil temperature and N2O emissions.

Results

The validation results show that the modified model predicted daily soil mean temperature and daily N2O fluxes accurately in all seasons with very high average Pearson’s correlation coefficients at the three sites (Ravg = 0.91 and 0.85 for soil temperature and N2O emissions, respectively).

Conclusions

The modelled N2O emissions were sensitive to snowmelt and freeze-thaw cycle in the cold climate region while the modelled soil temperature was sensitive to water flux. This provides a tool for N2O estimate in Canada and should also be appropriate for utilize in the similar cold climate regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen D, Kingston G, Rennenberg H, Dalal R, Schmidt S (2010) Effect of nitrogen fertilizer management and waterlogging on nitrous oxide emission from subtropical sugarcane soils. Agric Ecosyst Environ 136:209–217

    CAS  Google Scholar 

  • Amadi CC, Van Rees KCJ, Farrell RE (2016) Soil–atmosphere exchange of carbon dioxide, methane and nitrous oxide in shelterbelts compared with adjacent cropped fields. Agric Ecosyst Environ 223:123–134

    CAS  Google Scholar 

  • Bailey L (1976) Effects of temperature and root on denitrification in a soil. Can J Soil Sci 56:79–87

    CAS  Google Scholar 

  • Bailey L, Beauchamp E (1973) Effects of temperature on NO3 and NO2 reduction, nitrogenous gas production, and redox potential in a saturated soil. Can J Soil Sci 53:213–218

    CAS  Google Scholar 

  • Beauchamp E (1997) Nitrous oxide emission from agricultural soils. Can J Soil Sci 77:113–123

    CAS  Google Scholar 

  • Boulêtreau S, Salvo E, Lyautey E, Mastrorillo S, Garabetian F (2012) Temperature dependence of denitrification in phototrophic river biofilms. Sci Total Environ 416:323–328

    PubMed  Google Scholar 

  • Bhanja SN, Wang J, Shrestha NK, Zhang X (2019) Microbial kinetics and thermodynamic (MKT) processes for soil organic matter decomposition and dynamic oxidation-reduction potential: Model descriptions and applications to soil N2O emissions. Environ Pollut 247:812–823

    CAS  PubMed  Google Scholar 

  • Bremner JM (1997) Sources of nitrous oxide in soils. Nutr Cycl Agroecosyst 49:7–16

    CAS  Google Scholar 

  • Brin LD, Goyer C, Zebarth BJ, Burton DL, Chantigny MH (2018) Changes in snow cover alter nitrogen cycling and gaseous emissions in agricultural soils. Agric Ecosyst Environ 258:91–103

    CAS  Google Scholar 

  • Brooks PD, Williams MW, Schmidt SK (1996) Microbial activity under alpine snowpacks, Niwot Ridge, Colorado. Biogeochemistry 32:93–113

    Google Scholar 

  • Brown L, Syed B, Jarvis S.C, Sneath R.W, Phillips V.R, Goulding K.W.T, Li C (2002) Development and application of a mechanistic model to estimate emission of nitrous oxide from UK agriculture. Atmospheric Environment 36(6):917–928. https://doi.org/10.1016/S1352-2310(01)00512-X

    Article  CAS  Google Scholar 

  • Bruland GL, Richardson CJ, Whalen SC (2006) Spatial variability of denitrification potential and related soil properties in created, restored, and paired natural wetlands. Wetlands 26:1042–1056

    Google Scholar 

  • Barton L, Wolf B, Rowlings D, Scheer C, Kiese R, Grace P, Stefanova K, Butterbach-Bahl K (2015) Sampling frequency affects estimates of annual nitrous oxide fluxes. Scientific Reports 5:15912. https://doi.org/10.1038/srep15912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S (2013) Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos Trans Royal Soc B: Biol Sci 368:20130122. https://doi.org/10.1098/rstb.2013.0122

    Article  CAS  Google Scholar 

  • Butterbach-Bahl K, Stange F, Papen H, Li C (2001) Regional inventory of nitric oxide and nitrous oxide emissions for forest soils of southeast Germany using the biogeochemical model PnET-N-DNDC. J Geophys Res: Atmospheres 106:34155–34166

    CAS  Google Scholar 

  • Butterbach-Bahl K, Wolf B (2017) Greenhouse gases warming from freezing soils. Nat Geosci 10:248–249

    CAS  Google Scholar 

  • Christakis N, Wang J, Patel MK, Bradley MSA, Leaper MC, Cross M (2006) Aggregation and caking process of granular materials: continuum model and numerical simulation with application to sugar. Advanced Powder Technol 17(5):543–565

    CAS  Google Scholar 

  • Chung SO, Horton R (1987) Soil heat and water flow with a partial surface mulch. Water Resour Res 23:2175–2186

    Google Scholar 

  • Clark IM, Buchkina N, Jhurreea D, Goulding KW, Hirsch PR (2012) Impacts of nitrogen application rates on the activity and diversity of denitrifying bacteria in the Broadbalk Wheat Experiment. Phil Trans R Soc B 367:1235–1244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui G, Wang J (2019) Improving the DNDC biogeochemistry model to simulate soil temperature and emissions of nitrous oxide and carbon dioxide in cold regions. Sci Total Environ 687:61–70

    CAS  PubMed  Google Scholar 

  • Davidson EA, Keller M, Erickson HE, Verchot LV, Veldkamp E (2000) Testing a Conceptual Model of Soil Emissions of Nitrous and Nitric Oxides: Using two functions based on soil nitrogen availability and soil water content, the hole-in-the-pipe model characterizes a large fraction of the observed variation of nitric oxide and nitrous oxide emissions from soils. Bioscience 50:667–680

    Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    CAS  PubMed  Google Scholar 

  • Davidson EA (2009) The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat Geosci 2:659–662

    CAS  Google Scholar 

  • Dawson R, Murphy K (1972) The temperature dependency of biological denitrification. Water Res 6:71–83

    CAS  Google Scholar 

  • de Bruijn AMG, Butterbach-Bahl K, Blagodatsky S, Grote R (2009) Model evaluation of different mechanisms driving freeze–thaw N2O emissions. Agric Ecosyst Environ 133:196–207

    Google Scholar 

  • de Vries DA (1963) Thermal properties of soils, in: Wijk, R.W.v. (Ed.), Physics of plant environment. North Holland, Amsterdam, pp. 210-235

  • Del Grosso SJ, Parton WJ, Ojima DS, Keough CA, Riley TH, Mosier AR (2008) DAYCENT simulated effects of land use and climate on county level N loss vectors in the USA. in Nitrogen in the Environment: Sources, Problems, and Management, Chapter 18, (2nd version), Eds: Hatfield, J.L. and Follett, R.F., Elsevier, pp.571-595

  • Deng B, Wang J (2017) Saturated-unsaturated groundwater modelling using 3D Richards equation with a coordinate transform of nonorthogonal grids. Appl Math Model 50:39–52

    Google Scholar 

  • Dignac MF, Derrien D, Barré P, Barot S, Cécillon L, Chenu C, Chevallier T, Freschet GT, Garnier P, Guenet B, Hedde M, Klumpp K, Lashermes G, Maron PA, Nunan N, Roumet C, Basile-Doelsch I (2017) Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A Review Agron Sustain Dev 37:14

    Google Scholar 

  • Dobbie K, McTaggart I, Smith K (1999) Nitrous oxide emissions from intensive agricultural systems: variations between crops and seasons, key driving variables, and mean emission factors. J Geophys Res: Atmospheres 104:26891–26899

    CAS  Google Scholar 

  • Dutta B, Congreves K, Smith W, Grant B, Rochette P, Chantigny M, Desjardins R (2016) Improving DNDC model to estimate ammonia loss from urea fertilizer application in temperate agroecosystems. Nutr Cycl Agroecosyst 106:275–292

    CAS  Google Scholar 

  • Dutta B, Grant B, Campbell CA, Lemke RL, Desjardins R, Smith W (2017) A multi model evaluation of long-term effects of crop management and cropping systems on nitrogen dynamics in the Canadian semi-arid prairie. Agric Syst 151:136–147

    Google Scholar 

  • Dutta B, Grant BB, Congreves KA, Smith WN, Wagner-Riddle C, VanderZaag AC, Tenuta M, Desjardins RL (2018) Characterising effects of management practices, snow cover, and soil texture on soil temperature: Model development in DNDC. Biosyst Eng 168:54–72

    Google Scholar 

  • Environment-Canada (2005). National inventory report-Greenhouse gas sources and sinks in Canada 1990-2003. Submission to the UNFCCC. Greenhouse Gas Division, Environment Canada

  • Environment-Canada (2015). Climate: Daily Data. http://climate.weather.gc.ca/

  • Ferdous J (2016) Quantifying the effect of sprinkler irrigation on greenhouse gas emissions. University of Saskatchewan, Canada

    Google Scholar 

  • Groffman PM, Butterbach-Bahl K, Fulweiler RW, Gold AJ, Morse JL, Stander EK, Tague C, Tonitto C, Vidon P (2009) Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry 93:49–77

    CAS  Google Scholar 

  • Harrison R, Webb J (2001) A review of the effect of N fertilizer type on gaseous emissions. Adv Agron 73:65–108

    CAS  Google Scholar 

  • Heinen M (2006) Simplified denitrification models: Overview and properties. Geoderma 133:444–463

    CAS  Google Scholar 

  • Hénault C, Germon J (2000) NEMIS, a predictive model of denitrification on the field scale. Eur J Soil Sci 51:257–270

    Google Scholar 

  • Hock R (2003) Temperature index melt modelling in mountain areas. J Hydrol 282:104–115

    Google Scholar 

  • Holzworth DP, Snow V, Janssen S et al (2015) Agricultural production systems modelling and software: current status and future prospects. Environ Modell Software 72:276–286

    Google Scholar 

  • Holzworth D, Huth NI, Fainges J et al (2018) APSIM Next Generation: overcoming challenges in modernizing a farming systems model. Environ Model Softw 103:43–51

    Google Scholar 

  • Houghton J, Jenkins G, Ephraums J (1990) Climate change The IPCC climatic assessment. Report prepared for IPCC by Working Group 1. Cambridge University Press, Cambridge

    Google Scholar 

  • Hu G, Zhao L, Wu X, Li R, Wu T, Xie C, Qiao Y, Shi J, Li W, Cheng G (2016) New Fourier-series-based analytical solution to the conduction–convection equation to calculate soil temperature, determine soil thermal properties, or estimate water flux. Int J Heat Mass Transf 95:815–823

    Google Scholar 

  • IPCC (2014) In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds) Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Kariyapperuma KA, Wagner-Riddle C, Furon AC, Li C (2011) Assessing spring thaw nitrous oxide fluxes simulated by the DNDC model for agricultural soils. Soil Sci Soc Am J 75:678–690

    CAS  Google Scholar 

  • Ko MK, Sze ND, Weisenstein DK (1991) Use of satellite data to constrain the model-calculated atmospheric lifetime for N2O: Implications for other trace gases. J Geophys Res: Atmospheres 96:7547–7552

    Google Scholar 

  • Kroeze C, Mosier A, Bouwman L (1999) Closing the global N2O budget: a retrospective analysis 1500–1994. Glob Biogeochem Cycles 13:1–8

    CAS  Google Scholar 

  • Kröbel R, Smith W, Grant B, Desjardins R, Campbell C, Tremblay N, Li C, Zentner R, McConkey B (2011) Development and evaluation of a new Canadian spring wheat sub-model for DNDC. Can J Soil Sci 91:503–520

    Google Scholar 

  • Li C, Frolking S, Frolking TA (1992) A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. J Geophys Res: Atmospheres 97:9759–9776

    CAS  Google Scholar 

  • Li C, Aber J, Stange F, Butterbach-Bahl K, Papen H (2000) A process-oriented model of N2O and NO emissions from forest soils: 1. Model development. J Geophys Res: Atmospheres 105:4369–4384

    CAS  Google Scholar 

  • Li CS, Farahbakhshazadb N, Jaynesc DB, Dinnesc DL, Salasd W, McLaughlinb D (2006) Modeling nitrate leaching with a biogeochemical model modified based on observations in a row-cropfield in Iowa. Ecol Model 196:116–130

    Google Scholar 

  • Li H, Wang L, Qiu J, Li C, Gao M, Gao C (2014) Calibration of DNDC model for nitrate leaching from an intensively cultivated region of Northern China. Geoderma 223-225:108–118

    CAS  Google Scholar 

  • Li Y, Shah SHH, Wang J (2020) Modelling of nitrification inhibitor and its effects on emissions of nitrous oxide (N2O) in the UK. Sci Total Environ 709:136156

    CAS  PubMed  Google Scholar 

  • Meijide A, García-Torres L, Arce A, Vallejo A (2009) Nitrogen oxide emissions affected by organic fertilization in a non-irrigated Mediterranean barley field. Agric Ecosyst Environ 132:106–115

    CAS  Google Scholar 

  • Metay A, Oliver R, Scopel E, Douzet J-M, Moreira JAA, Maraux F, Feigl BJ, Feller C (2007) N2O and CH4 emissions from soils under conventional and no-till management practices in Goiânia (Cerrados, Brazil). Geoderma 141:78–88

    CAS  Google Scholar 

  • Mosier A, Kroeze C, Nevison C, Oenema O, Seitzinger S, van Cleemput O (1998) Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutr Cycl Agroecosyst 52:225–248

    CAS  Google Scholar 

  • Nömmik H (1956) Investigations on Denitrification in Soil. Acta Agric Scand 6:195–228

    Google Scholar 

  • Norman J, Jansson P-E, Farahbakhshazad N, Butterbach-Bahl K, Li C, Klemedts-son L (2008) Simulation of NO and N2O emissions from a spruce forest duringa freeze/thaw event using an N-flux submodel from the PnET-N-DNDC modelintegrated to CoupModel. Ecol Model 216:18–30

    CAS  Google Scholar 

  • Painter SL, Coon ET, Atchley AL, Berndt M, Garimella R, Moulton JD, Svyatskiy D, Wilson CJ (2016) Integrated surface/subsurface permafrost thermal hydrology: Model formulation and proof-of-concept simulations. Water Resour Res 52:6062–6077 https://doi.org/10.1002/2015WR018427

    Google Scholar 

  • Parton WJ, Mosier AR, Ojima DS, Valentine DW, Schimel DS, Weier K, Kulmala AE (1996) Generalized model for N2 and N2O production from nitrification and denitrification. Glob Biogeochem Cycles 10:401–412

    CAS  Google Scholar 

  • Parton WJ, Hartman M, Ojima DS, Schimel DS (1998) DAYCENT and its land surface submodel: description and testing. Glob Planet Chang 19:35–48

    Google Scholar 

  • Penner E (1970) Thermal conductivity of frozen soils. Can J Earth Sci 7:982–987

    Google Scholar 

  • Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science 326:123–125

    CAS  PubMed  Google Scholar 

  • Reay DS, Davidson EA, Smith KA, Smith P, Melillo JM, Dentener F, Crutzen PJ (2012) Global agriculture and nitrous oxide emissions. Nat Clim Chang 2:410–416

    CAS  Google Scholar 

  • Rochette P, Worth DE, Lemke RL, McConkey BG, Pennock DJ, Wagner-Riddle C, Desjardins R (2008) Estimation of N2O emissions from agricultural soils in Canada. I Development of a country-specific methodology. Canadian J Soil Sci 88:641–654

    CAS  Google Scholar 

  • Rodrigo A, Recousa S, Neela C, Marya B (1997) Modelling temperature and moisture effects on C–N transformations in soils: comparison of nine models. Ecol Model 102:325–339

    CAS  Google Scholar 

  • Ruan L, Robertson P (2017) Reduced snow cover increases wintertime nitrous oxide (N2O) emissions from an agricultural soil in the upper U.S. Midwest. Ecosystems 20:917–927

    CAS  Google Scholar 

  • Rühaak W, Anbergen H, Grenier C, McKenzie J, Kurylyk BL, Molson J, Roux N, Sass I (2015) Benchmarking Numerical Freeze/Thaw Models. Energy Procedia 76:301–310

    Google Scholar 

  • Saggar S, Andrew R, Tate K, Hedley C, Rodda N, Townsend J (2004) Modelling nitrous oxide emissions from dairy-grazed pastures. Nutr Cycl Agroecosyst 68:243–255

    CAS  Google Scholar 

  • Shah SHH, Li Y, Wang J, Collins AL (2020) Optimizing farmyard manure and cattle slurry applications for intensively managed grasslands based on UK-DNDC model simulations. Sci Total Environ 714:136672

    CAS  PubMed  Google Scholar 

  • Shah SHH, Wang J, Hao X, Thomas BW (2021) Modeling the effect of salt-affected soil on water balance fluxes and nitrous oxide emission using modified DNDC. J Environ Manag 280:111678

    Google Scholar 

  • Shen J, Treu R, Wang J, Nicholson F, Bhogal A, Thorman R (2018a) Modeling nitrous oxide emissions from digestate and slurry applied to three agricultural soils in the United Kingdom: Fluxes and emission factors. Environ Pollution 243(Part B):1952–1965

    CAS  Google Scholar 

  • Shen J, Treu R, Wang J, Thorman R, Nicholson F, Bhogal A (2018b) Modeling nitrous oxide emissions from three United Kingdom farms following application of farmyard manure and green compost. Sci Total Environ 637:1566–1577

    PubMed  Google Scholar 

  • Shen J, Treu R, Wang J, Hao X, Thomas BW (2019) Modeling growing season and annual cumulative nitrous oxide emissions and emission factors from organically fertilized soils planted with barley in Lethbridge, Alberta, Canada. Agric Syst 176:102654

    Google Scholar 

  • Simunek J, Hendrickx JMH, Borchers B (2001) Modeling transient temperaure distributions around landmines in homogeneous bare soils. Proc. SPIE 4394, Detect Remediat Technol Mines Minelike Targets VI:387–397. https://doi.org/10.1117/12.445490

    Article  Google Scholar 

  • Smid AF, Beauchamp EG (1976) Effects of temperature and organic matter on denitrification in soil. Can J Soil Sci 56:385–391

    CAS  Google Scholar 

  • Smith W, Desjardins R, Grant B, Li C, Lemke R, Rochette P, Corre M, Pennock D (2002) Testing the DNDC model using N2O emissions at two experimental sites in Canada. Can J Soil Sci 82:365–374

    CAS  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, Carl BM, Ogle S, O'Mara F, Rice C, Scholes B, Sirotenko O (2007) In: Mentz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Agriculture. In climate change 2007: mitigation. Contribution of working group III to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O'Mara F, Rice C (2008a) Greenhouse gas mitigation in agriculture. Philos Trans Royal Soc B: Biol Sci 363:789–813

    CAS  Google Scholar 

  • Smith WN, Grant BB, Desjardins RL, Rochette P, Drury CF, Li C (2008b) Evaluation of two process-based models to estimate soil N2O emissions in Eastern Canada. Can J Soil Sci 88:251–260

    CAS  Google Scholar 

  • Smith W, Grant B, Qi ZM, He WT, VanderZaag A, Drury CF, Helmers M (2020) Development of the DNDC model to improve soil hydrology and incorporate mechanistic tile drainage: A comparative analysis with RZWQM2. Environ Modell Software 123:104577

    Google Scholar 

  • Snow VO, Cichota R, McAuliffe RJ, Hutchings NJ, Vejlin J (2017) Increasing the spatial scale of process-based agricultural systems models by representing heterogeneity: The case of urine patches in grazed pastures. Environ Model Softw 90:89–106

    Google Scholar 

  • Stanford G, Dzienia S, Pol RAV (1975) Effect of temperature on denitrification rate in soils. Soil Sci Soc Am J 39:867–870

    CAS  Google Scholar 

  • Stevens R, Laughlin R, Burns L, Arah J, Hood R (1997) Measuring the contributions of nitrification and denitrification to the flux of nitrous oxide from soil. Soil Biol Biochem 29:139–151

    CAS  Google Scholar 

  • Syakila A, Kroeze C (2011) The global nitrous oxide budget revisited. Greenhouse Gas Measurement Manag 1:17–26

    CAS  Google Scholar 

  • Uzoma KC, Smith W, Grant B, Desjardins RL, Gao X, Hanis K, Tenuta M, Goglio P, Li C (2015) Assessing the effects of agricultural management on nitrous oxide emissions using flux measurements and the DNDC model. Agric Ecosyst Environ 206:71–83

    CAS  Google Scholar 

  • Vilain G, Garnier J, Tallec G, Cellier P (2010) Effect of slope position and land use on nitrous oxide (N2O) emissions (Seine Basin, France). Agric For Meteorol 150:1192–1202

    Google Scholar 

  • Voigt C, Marushchak ME, Lamprecht RE, Jackowicz-Korczyński M, Lindgren A, Mastepanov M, Granlund L, Christensen TR, Tahvanainen T, Martikainen PJ, Biasi C (2017) Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw. Proc Natl Acad Sci 114:6238–6243. https://doi.org/10.1073/pnas.1702902114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van de Wal RSW (1996) Mass-balance modelling of the Greenland ice sheet: a comparison of an energy-balance model and a degree-day model. Ann Glaciol 23:36–45

    Google Scholar 

  • Vogel L, Makowski D, Garnier P, Vieublé-Gonod L, Raynaud X, Nunan N, Coquet Y, Chenu C, Falconer R, Pot V (2015) Modeling the effect of soil meso- and macropores topology on the biodegradation of a soluble carbon substrate. Advances Water Resour 83:123–136

    CAS  Google Scholar 

  • Wagner-Riddle C, Congreves KA, Abalos D, Berg AA, Brown SE, Ambadan JT, Gao X, Tenuta M (2017) Globally important nitrous oxide emissions from croplands induced by freeze–thaw cycles. Nat Geosci 10:279–283

    CAS  Google Scholar 

  • Wang J, Cardenas LM, Misselbrook TH, Cuttle S, Thorman RE, Li C (2012) Modelling nitrous oxide emissions from grazed grassland systems. Environ Pollut 162:223–233

    CAS  PubMed  Google Scholar 

  • Wang J, Christakis N, Patel MK, Cross M, Leaper MC (2004) A computational model of coupled heat and moisture transfer with phase changein granular sugar during varying environmental conditions. Numerical Heat Transfer, Part A: Applications 45(8):751–776. https://doi.org/10.1080/10407780490424280

    Article  CAS  Google Scholar 

  • Wang J, Li A, Jin H (2016) Sensitivity analysis of the DeNitrification and Decomposition model for simulating regional carbon budget at the wetland-grassland area on the Zoige Plateau, china. J Mt Sci 13:1200–1216

    Google Scholar 

  • Wang J, Li Y, Bork EW, Richter GM, Eum HI, Chen C, Shah SHH, Mezbahuddin S (2020) Modelling spatio-temporal patterns of soil carbon and greenhouse gas emissions in grazing lands: Current status and prospects. Sci Total Environ 739:139092

    CAS  PubMed  Google Scholar 

  • Wang J, Shrestha NK, Delavar MA, Meshesha TW, Bhanja SN (2021) Modelling Watershed and River Basin Processes in Cold Climate Regions: A Review. Water 13(4):518

    Google Scholar 

  • West RC (1982) Handbook of Chemistry and Physics. CRC Press, Boca Raton

    Google Scholar 

  • Xu L, Baldocchi DD, Tang J (2004) How soil moisture, rain pulses, and growth alter the response of ecosystem respiration and temperature. Glob Biogeochem Cycles 18:GB4002. https://doi.org/10.1029/2004GB002281

    Article  CAS  Google Scholar 

  • Yadav D, Wang J (2017) Modelling carbon dioxide emissions from agricultural soils in Canada. Environ Pollut 230:1040–1049

    CAS  PubMed  Google Scholar 

  • Yu Y, Zhao C (2015) Modelling soil and root respiration in a cotton field using the DNDC model. J Plant Nutr Soil Sci 178:787–791

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Alberta Economic Development and Trade for Campus Alberta Innovation Program (CAIP) Research Chair (No. RCP-12-001-BCAIP). The meteorological data are accessible from http://climate.weather.gc.ca/historical_data/search_historic_data_e.html.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junye Wang.

Ethics declarations

Conflicts of interest

We have no conflicts of interest to disclose.

Additional information

Responsible Editor: Hans Lambers.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 248 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, D., Wang, J. An improved UK-DNDC model for evaluations of soil temperature and nitrous oxide emissions from Canadian agriculture. Plant Soil 469, 15–37 (2021). https://doi.org/10.1007/s11104-021-05125-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-05125-2

Keywords

Navigation