Skip to main content
Log in

Tick infestation of birds across a gradient of urbanization intensity in the United States Great Plains

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

Migratory birds play an important role in large-scale movements of ticks and tick-borne pathogens, yet little is known about tick infestation of resident birds (e.g., non-migratory species and migratory species during the breeding season), especially in urban ecosystems. We captured birds during the breeding season in parks and greenspaces in Oklahoma City, Oklahoma, USA, to evaluate overall tick infestation patterns and to determine if urbanization influences infestation prevalence (the proportion of birds parasitized) and intensity (the number of ticks on infested birds). Of 459 birds, 111 (24.2%) had ≥ 1 tick, a high proportion of infestation compared with past North American studies. The most frequently infested species were Carolina Wren (Thryothorus ludovicianus; 56%), Brown Thrasher (Toxostoma rufum; 37%), and Northern Cardinal (Cardinalis cardinalis; 27%). The Lone Star Tick (Amblyomma americanum) comprised half (51%; n = 322) of all ticks on birds; other species sampled included Gulf Coast Tick (A. maculatum) (36%) and Rabbit Tick (Haemaphysalis leporispalustris) (13%). Urbanization intensity (i.e., the percentage of developed land around sites) was inversely related to infestation prevalence for all birds combined and for Carolina Wren, but intensity of infestation was unrelated to urbanization. Our results suggest that non-migratory and migratory birds during sedentary periods are important carriers of ticks in urban areas, and that tick infestation patterns can be influenced by the level of urbanization in the surrounding landscape. Clarifying how urban birds influence tick populations, and how urbanization shapes bird-tick interactions, will increase understanding of tick-borne disease ecology in urban ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

Data are available within this manuscript and can be provided by the authors upon request.

Code availability

All analyses were conducted using standard code within existing R packages; however, code can be provided by the authors upon request.

References

  • Allan BF, Dutra HP, Goessling LS, Barnett K, Chase JM, Marquis RJ, Pang G, Storch GA, Thach R, Orrock JL (2010) Invasive honeysuckle eradication reduces tick-borne disease risk by altering host dynamics. Proc Nat Acad Sci USA 107(43):18523–18527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allan BF, Keesing F, Ostfeld RS (2003) Effect of forest fragmentation on Lyme Disease risk. Cons Biol 17(1):267–272

    Article  Google Scholar 

  • Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23(1):1–26

    Article  Google Scholar 

  • Barker R, Kocan AA, Ewing S, Wettemann R, Payton ME (2004) Occurrence of the Gulf Coast tick (Acari: Ixodidae) on wild and domestic mammals in north-central Oklahoma. J Med Entomol 41(2):170–178

    Article  CAS  PubMed  Google Scholar 

  • Biggs HM, Barton Behravesh C, Bradley KK et al (2016) Diagnosis and management of tickborne rickettsial diseases: Rocky Mountain spotted fever and other spotted fever group rickettsioses, ehrlichioses, and anaplasmosis—United States: A practical guide for health care and public health professionals. MMWR-Morbid Mortal W 65(2):1–44

    Google Scholar 

  • Blanton LS, Walker DH, Bouyer DH (2014) Rickettsiae and ehrlichiae within a city park: is the urban dweller at risk? Vector-Borne Zoonot 14(2):168–170

    Article  Google Scholar 

  • Bradley CA, Altizer S (2007) Urbanization and the ecology of wildlife diseases. Trend Ecol Evol 22(20):95–102

    Article  Google Scholar 

  • Brown RN, Lane RS, Dennis DT (2005) Geographic distributions of tick-borne diseases and their vectors. In: Goodman JL et al (eds) Tick-borne diseases of humans. ASM Press, Washington, DC, pp 363–391

    Google Scholar 

  • Brownstein JS, Holford TR, Fish D (2005) Effect of climate change on Lyme disease risk in North America. EcoHealth 2(1):38–46

    Article  PubMed  PubMed Central  Google Scholar 

  • Centers for Disease Control and Prevention (CDC) (2019) Tickborne Diseases of the U.S. https://www.cdc.gov/ticks/tickbornediseases/index.html. Accessed 24 Aug 2020

  • Chaves LF, Hamer GL, Walker ED, Brown WM, Ruiz MO, Kitron UD (2011) Climatic variability and landscape heterogeneity impact urban mosquito diversity and vector abundance and infection. Ecosphere 2(6):1–21

    Article  Google Scholar 

  • Chesser RT, Burns KJ, Cicero C, et al. (2018) Check-list of North American Birds. American Ornithological Society. http://checklist.americanornithology.org/taxa. Accessed 24 Aug 2020

  • Cohen EB, Auckland LD, Marra PP, Hamer SA (2015) Avian migrants facilitate invasions of Neotropical ticks and tick-borne pathogens into the United States. Appl Environ Microb 81(24):8366–8378

    Article  CAS  Google Scholar 

  • Coley K (2015) Identification guide to larval stages of ticks of medical importance in the USA. Georgia Southern University, Thesis

    Google Scholar 

  • Comstedt P, Bergström S, Olsen B, Garpmo U, Marjavaara L, Mejlon H, Barbour AG, Bunikis J (2006) Migratory passerine birds as reservoirs of Lyme Borreliosis in Europe. Emerg Infect Dis 12(7):1087–1095

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooper NW, Marra PP (2020) Hidden long-distance movements of a migratory bird. Curr Biol 30:4056–4062

    Article  CAS  PubMed  Google Scholar 

  • Cox DT, Inger R, Hancock S, Anderson K, Gaston KJ (2016) Movement of feeder-using songbirds: the influence of urban features. Sci Rep 6:37669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahlgren FS, Heitman KN, Drexler NA, Massung RF, Behravesh CB (2015) Human granulocytic anaplasmosis in the United States from 2008 to 2012: a summary of national surveillance data. Am J Trop Med Hyg 93(1):66–72

    Article  PubMed  PubMed Central  Google Scholar 

  • Drexler NA, Dahlgren FS, Heitman KN, Massung RF, Paddock CD, Behravesh CB (2016) National surveillance of spotted fever group rickettsioses in the United States, 2008–2012. Am J Trop Med Hyg 94(1):26–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubie TR, Grantham R, Coburn L, Noden BH (2017) Pictorial key for identification of immature stages of common ixodid ticks found in pastures in Oklahoma. Southwestern Entomologist 42(1):1–14

    Article  Google Scholar 

  • Egizi AM, Robbins RG, Beati L, Nava S, Vans CR, Occi JL, Fonseca DM (2019) A pictorial key to differentiate the recently detected exotic Haemaphysalis longicornis Neumann, 1901 (Acari, Ixodidae) from native congeners in North America. Zookeys 818:117–128

    Article  Google Scholar 

  • Estrada-Peña A (2003) The relationships between habitat topology, critical scales of connectivity and tick abundance Ixodes ricinus in a heterogeneous landscape in northern Spain. Ecography 26(5):661–671

    Article  Google Scholar 

  • Evans BS, Kilpatrick AM, Hurlbert AH, Marra PP (2017) Dispersal in the urban matrix: assessing the influence of landscape permeability on the settlement patterns of breeding songbirds. Front Ecol Evol 5:63

    Article  Google Scholar 

  • Evans BS, Ryder TB, Reitsma R, Hurlbert AH, Marra PP (2015) Characterizing avian survival along a rural-to-urban land use gradient. Ecology 96(6):1631–1640

    Article  Google Scholar 

  • Foley JA, DeFries R, Asner GP et al (2005) Global consequences of land use. Science 309(5734):570–574

    Article  CAS  PubMed  Google Scholar 

  • Goddard J, Varela-Stokes AS (2009) Role of the lone star tick, Amblyomma americanum (L.), in human and animal diseases. Vet Parasitol 160(1–2):1–12

  • Greater Oklahoma City (2020) Climate. https://www.greateroklahomacity.com/index.php?src=gendocs&ref=Climate&category=QualityofLife&contentVis=true. Accessed 24 Aug 2020

  • Greenwood PJ, Harvey PH (1982) The natal and breeding dispersal of birds. Annu Rev Ecol Syst 13:1–21

    Article  Google Scholar 

  • Grimm NB, Foster D, Groffman P, Grove JM, Hopkinson CS, Nadelhoffer KJ, Pataki DE, Peters DP (2008) The changing landscape: ecosystem responses to urbanization and pollution across climatic and societal gradients. Front Ecol Environ 6(5):264–272

    Article  Google Scholar 

  • Hage KD (1975) Urban-rural humidity differences. J Appl Meteorol 14(7):1277–1283

    Article  Google Scholar 

  • Hamer SA, Goldberg TL, Kitron UD, Brawn JD, Anderson TK, Loss SR, Walker ED, Hamer GL (2012b) Wild birds and urban ecology of ticks and tick-borne pathogens, Chicago, Illinois, USA, 2005–2010. Emerg Infect Dis 18(10):1589–1595

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamer S, Lehrer E, Magle S (2012a) Wild birds as sentinels for multiple zoonotic pathogens along an urban to rural gradient in greater Chicago. Illinois Zoonoses Public Hlth 59(5):355–364

    Article  CAS  Google Scholar 

  • Heitman KN, Dahlgren FS, Drexler NA, Massung RF, Behravesh CB (2016) Increasing incidence of ehrlichiosis in the United States: a summary of national surveillance of Ehrlichia chaffeensis and Ehrlichia ewingii infections in the United States, 2008–2012. Am J Trop Med Hyg 94(1):52–60

    Article  CAS  PubMed Central  Google Scholar 

  • Heller EL, Gaff HD, Brinkerhoff RJ, Walters EL (2019) Urbanization and tick parasitism in birds of coastal southeastern Virginia. J Wildl Manage 83(4):975–984

  • Homer CG, Dewitz JA, Yang L, Jin S, Danielson P, Xian G, Coulston J, Herold ND, Wickham JD, Megown K (2015) Completion of the 2011 National Land Cover Database for the conterminous United States-Representing a decade of land cover change information. Photogramm Eng Rem S 81(5):345–354

    Google Scholar 

  • Hornok S, Csörgő T, De La Fuente J, Gyuranecz M, Privigyei C, Meli ML, Kreizinger Z, Gönczi E, Fernández de Mera IG, Hofmann-Lehmann R (2013) Synanthropic birds associated with high prevalence of tick-borne rickettsiae and with the first detection of Rickettsia aeschlimannii in Hungary. Vector-Borne Zoonot 13(2):77–83

    Article  Google Scholar 

  • Jobe DA, Nelson JA, Adam MD, Martin SA Jr (2007) Lyme disease in urban areas. Chicago Emerg Infect Dis 13(11):1780–1799

    Google Scholar 

  • Jokimäki J, Kaisanlahti-Jokimäki M-L, Suhonen J, Clergeau P, Pautasso M, Fernández-Juricic E (2011) Merging wildlife community ecology with animal behavioral ecology for a better urban landscape planning. Landscape Urban Plan 100(4):383–385

    Article  Google Scholar 

  • Jordan RA, Egizi A (2019) The growing importance of lone star ticks in a Lyme disease endemic county: Passive tick surveillance in Monmouth County, NJ, 2006–2016. PLoS One 14(2):e0211778

  • Kang W, Minor ES, Park C-R, Lee D (2015) Effects of habitat structure, human disturbance, and habitat connectivity on urban forest bird communities. Urban Ecosyst 18(3):857–870

    Article  Google Scholar 

  • Keesing F, Belden LK, Daszak P et al (2010) Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468(7324):647–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keirans JE, Durden LA (1998) Illustrated key to nymphs of the tick genus Amblyomma (Acari: Ixodidae) found in the United States. J Med Entomol 1;35(4):489–95

  • Keirans JE, Litwak TR (1989) Pictorial key to the adults of hard ticks, family Ixodidae (Ixodida: Ixodoidea), east of the Mississippi River. J Med Entomol 26(5):435–448

    Article  CAS  PubMed  Google Scholar 

  • Kim HH (1992) Urban heat island. Int J Remote Sens 13(12):2319–2336

    Article  Google Scholar 

  • Kinsey AA, Durden LA, Oliver JH Jr (2000) Tick infestations of birds in coastal Georgia and Alabama. J Parasitol 86(2):251–254

    Article  CAS  PubMed  Google Scholar 

  • Kollars TM, Oliver JH (2003) Host associations and seasonal occurrence of Haemaphysalis leporispalustris, Ixodes brunneus, I. cookei, I. dentatus, and I. texanus (Acari: Ixodidae) in southeastern Missouri. J Med Entomol 40(1):103–107

  • Kowarik I (2008) On the role of alien species in urban flora and vegetation. In: Marzluff JM et al (eds) Urban Ecology. Springer, New York, pp 321–338

    Chapter  Google Scholar 

  • Lado P, Nava S, Mendoza-Uribe L, Caceres AG et al (2018) The Amblyomma maculatum Koch, 1844 (Acari: Ixodidae) group of ticks: phenotypic plasticity or incipient speciation? Parasites Vector 11(1):610

    Article  Google Scholar 

  • Levi T, Kilpatrick AM, Mangel M, Wilmers CC (2012) Deer, predators, and the emergence of Lyme disease. Proc Natl Acad Sci USA 109(27):10942–10947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LoGiudice K, Ostfeld RS, Schmidt KA, Keesing F (2003) The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk. Proc Natl Acad Sci USA 100(2):567–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loss SR, Noden BH, Hamer GL, Hamer SA (2016) A quantitative synthesis of the role of birds in carrying ticks and tick-borne pathogens in North America. Oecologia 182(4):947–959

    Article  PubMed  Google Scholar 

  • Maupin GO, Fish D, Zultowsky J, Campos EG, Piesman J (1991) Landscape ecology of Lyme Disease in a residential area of Westchester county. New York Am J Epidemiol 133(11):1105–1113

    Article  CAS  PubMed  Google Scholar 

  • Morshed MG, Scott JD, Fernando K, Beati L, Mazerolle DF, Geddes G, Durden LA (2005) Migratory songbirds disperse ticks across Canada, and first isolation of the Lyme disease spirochete, Borrelia burgdorferi, from the avian tick. Ixodes Auritulus J Parasitol 91(4):780–790

    Article  PubMed  Google Scholar 

  • Mukherjee N, Beati L, Sellers M, Burton L, Adamson S, Robbins RG, Moore F, Karim S (2014) Importation of exotic ticks and tick-borne spotted fever group rickettsiae into the United States by migrating songbirds. Ticks Tick-Borne Dis 5(2):127–134

    Article  PubMed  Google Scholar 

  • Nicholson WL, Sonenshine DE, Noden, BH, Brown RN (2019) Ticks (Ixodidae). in Medical and Veterinary Entomology (Third Edition), Eds. Mullen and Durden. Academic Press. https://www.sciencedirect.com/science/article/pii/B9780128140437000273

  • Ogden NH, Lindsay LR, Hanincová K et al (2008) Role of migratory birds in introduction and range expansion of Ixodes scapularis ticks and of Borrelia burgdorferi and Anaplasma phagocytophilum in Canada. Appl Environ Microb 74(6):1780–1790

    Article  CAS  Google Scholar 

  • Ogden NH, Trudel L, Artsob H et al (2006) Ixodes scapularis ticks collected by passive surveillance in Canada: analysis of geographic distribution and infection with Lyme borreliosis agent Borrelia burgdorferi. J Med Entomol 43(3):600–609

    Article  CAS  PubMed  Google Scholar 

  • Ogden NH, Radojevic M, Wu X, Duvvuri VR, Leighton PA, Wu J (2014) Estimated effects of projected climate change on the basic reproductive number of the Lyme disease vector Ixodes scapularis. Environ Health Perspect 122(6):631–638

    Article  PubMed  PubMed Central  Google Scholar 

  • Oklahoma State Department of Health (OSDH) (2020) Oklahoma State Health Department Confirms first case and death of Heartland Virus. https://www.ok.gov/health/Organization/Office_of_Communications/News_Releases/2014_News_Releases/Oklahoma_State_Health_Department_Confirms_First_Case_and_Death_of_Heartland_Virus.html. Accessed 24 Aug 2020

  • Ostfeld RS, Canham CD, Oggenfuss K, Winchcombe RJ, Keesing F (2006) Climate, deer, rodents, and acorns as determinants of variation in Lyme-disease risk. PLoS Biol 4(6):e145.

  • Ostfeld RS, Keesing F (2000) Biodiversity and disease risk: the case of Lyme disease. Cons Biol 14(3):722–728

    Article  Google Scholar 

  • Paddock CD, Childs JE (2003) Ehrlichia chaffeensis: a prototypical emerging pathogen. Clin Microb Rev 16(1):37–64

    Article  Google Scholar 

  • Patz JA, Daszak P, Tabor GM et al (2004) Unhealthy landscapes: policy Recommendations on land use change and infectious disease emergence. Environ Health Persp 112(10):1092–1098

    Article  Google Scholar 

  • Patz JA, Graczyk TK, Geller N, Vittor AY (2000) Effects of environmental change on emerging parasitic diseases. Int J Parasitol 30(12):1395–1405

    Article  CAS  PubMed  Google Scholar 

  • Pfäffle M, Littwin N, Muders SV, Petney TN (2013) The ecology of tick-borne diseases. Int J Parasitol 43(12):1059–1077

    Article  PubMed  Google Scholar 

  • Porretta D, Mastrantonio V, Amendolia S, Gaiarsa S, Epis S, Genchi C, Bandi C, Otranto D, Urbanelli S (2013) Effects of global changes on the climatic niche of the tick Ixodes ricinus inferred by species distribution modelling. Parasite Vector 6(1):271

    Article  Google Scholar 

  • Pyle P, Howell SN, Yunick RP, DeSante DF (1997) Identification guide to North American passerines. Slate Creek Press, Bolinas, California, USA

    Google Scholar 

  • R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Raghavan RK, Peterson AT, Cobos ME, Ganta R, Foley D (2019) Current and future distribution of the Lone Star Tick, Amblyomma americanum (L.)(Acari: Ixodidae) in North America. PLoS One 14(1):e0209082.

  • Ramalho CE, Hobbs RJ (2012) Time for a change: dynamic urban ecology. Trend Ecol Evol 27(3):179–188

    Article  Google Scholar 

  • Roselli MA (2019) Urban ecology of ticks in Oklahoma City: Tick distribution, pathogen prevalence, and avian infestation across an urbanization gradient. Oklahoma State University, Thesis

    Google Scholar 

  • Roselli MA, Cady SM, Lao S, Noden BH, Loss SR (2020) Variation in tick load among bird body parts: implications for studying the role of birds in the ecology and epidemiology of tick-borne diseases. J Med Entomol 57:845–851

    Article  PubMed  Google Scholar 

  • Rydzewski J, Mateus-Pinilla N, Warner RE, Nelson JA, Velat TC (2012) Ixodes scapularis (Acari: Ixodidae) distribution surveys in the Chicago metropolitan region. J Med Entomol 49(4):955–959

    Article  PubMed  Google Scholar 

  • Savard J-PL, Clergeau P, Mennechez G (2000) Biodiversity concepts and urban ecosystems. Landscape Urban Plan 48(3–4):131–142

    Article  Google Scholar 

  • Schmidt KA, Ostfeld RS (2001) Biodiversity and the dilution effect in disease ecology. Ecology 82(3):609–619

    Article  Google Scholar 

  • Schneider SC, Parker CM, Miller JR, Fredericks LP, Allan BF (2015) Assessing the contribution of songbirds to the movement of ticks and Borrelia burgdorferi in the midwestern United States during fall migration. EcoHealth 12(1):164–173

    Article  PubMed  Google Scholar 

  • Schwan TG, Raffel SJ, Schrumpf ME, Webster LS, Marques AR, Spano R, Rood M, Burns J, Hu R (2009) Tick-borne Relapsing Fever and Borrelia hermsii, Los Angeles County, California, USA. Emerg Infect Dis 15(7):1026–1031

    Article  PubMed  PubMed Central  Google Scholar 

  • Scott JD (2015) Birds widely disperse pathogen-infected ticks. In Mahala G (ed) Seabirds and Songbirds. Nova Publishers, New York, USA, pp 1–23

    Google Scholar 

  • Silaghi C, Woll D, Hamel D, Pfister K, Mahling M, Pfeffer M (2012) Babesia spp. and Anaplasma phagocytophilum in questing ticks, ticks parasitizing rodents and the parasitized rodents–analyzing the host-pathogen-vector interface in a metropolitan area. Parasit Vector 5(1):191

  • Springer YP, Jarnevich CS, Barnett DT, Monaghan AJ, Eisen RJ (2015) Modeling the present and future geographic distribution of the Lone Star Tick, Amblyomma americanum (Ixodida: Ixodidae), in the continental United States. Am J Trop Med Hyg 93(4):875–890

    Article  PubMed  PubMed Central  Google Scholar 

  • Springer YP, Johnson PT (2018) Large-scale health disparities associated with Lyme disease and human monocytic ehrlichiosis in the United States, 2007–2013. PLoS One 13(9):e0204609

  • Steere AC (1994) Lyme disease: a growing threat to urban populations. Proc Natl Acad Sci 91:2378–2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talley JL, Jaworski DC, Noden BH, Kocan KM, Little SL (2017) Common ticks of Oklahoma and tick-borne diseases. Oklahoma Cooperative Extension Fact Sheet. (Epp-7001) https://extension.okstate.edu/fact-sheets/common-ticks-of-oklahoma-and-tick-borne-diseases.html

  • United Nations (2014) World Urbanization Prospects, 2014 Revision. United Nations, New York, USA

  • United States Census Bureau (2019) Quick Facts: Oklahoma City, Oklahoma. https://www.census.gov/quickfacts/oklahomacitycityoklahoma. Accessed 24 Aug 2020

  • United States Environmental Protection Agency (USEPA) (2020) Level III and IV Ecoregions of the Continental United States. https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states. Accessed 24 Aug 2020

  • Uspensky I (2014) Tick pests and vectors (Acari: Ixodoidea) in European towns: Introduction, persistence and management. Ticks Tick-Borne Dis 5(1):41–47

    Article  PubMed  Google Scholar 

  • Walter WD, Beringer J, Hansen LP, Fischer JW, Millspaugh JJ, Vercauteren KC (2011) Factors affecting space use overlap by white-tailed deer in an urban landscape. Int J Geogr Inf Sci 25(3):379–392

    Article  Google Scholar 

  • Williams SC, Ward JS (2010) Effects of Japanese barberry (Ranunculales: Berberidaceae) removal and resulting microclimatic changes on Ixodes scapularis (Acari: Ixodidae) abundances in Connecticut, USA. Env Entomol 39(6):1911–1921

    Article  Google Scholar 

Download references

Acknowledgements

Research was funded by the Oklahoma Center for the Advancement of Science & Technology [HR16-038] and NIFA/USDA Hatch Grant funds through the Oklahoma Agricultural Experiment Station [OKL-03085 and OKL-03150]. We thank Dawn Brown, Caitlin Laughlin, Caleb McKinney, and Liam Whiteman for assistance collecting data and Sue Fairbanks for providing feedback and insight on the manuscript.

Funding

Research was funded by the Oklahoma Center for the Advancement of Science & Technology [HR16-038] and NIFA/USDA Hatch Grant funds through the Oklahoma Agricultural Experiment Station [OKL-03085 and OKL-03150].

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived and designed the study and developed its methods. M.A.R. led fieldwork and data collection, managed and analyzed data, and drafted the manuscript. B.H.N. and S.R.L. provided feedback and edits on manuscript drafts.

Corresponding author

Correspondence to Megan A. Roselli.

Ethics declarations

Ethics approval

All applicable national, state, and institutional guidelines for the care and use of animals were followed. Handling of wild birds was permitted under a U.S. federal bird banding permit (#23929) and State of Oklahoma Scientific Collector’s Permit (#6963); bird handling was also approved by the Institutional Animal Care and Use Committee at Oklahoma State University (protocol #AG-14–6).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflicts of interest/competing interests

The authors declare that they have no conflicts of interests or competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roselli, M.A., Noden, B.H. & Loss, S.R. Tick infestation of birds across a gradient of urbanization intensity in the United States Great Plains. Urban Ecosyst 25, 379–391 (2022). https://doi.org/10.1007/s11252-021-01160-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-021-01160-0

Keywords

Navigation