Skip to main content
Log in

Use of UV-Vis Spectrophotometry for Characterization of Carbon Nanostructures: a Review

  • Published:
Theoretical and Experimental Chemistry Aims and scope

A detailed review of the application of the method of absorption spectrophotometry in the ultraviolet and visible regions for the study of carbon nanostructures (CNSs), such as graphene, carbon nanotubes (CNTs), their hybrids, etc., is presented. It is shown that such CNSs have characteristic absorption bands in the UV-Vis regions of the spectrum, and the intensity of surface plasmon resonance (SPR) peaks is proportional to their concentration in suspensions. It is established that the absorption of light by carbon nanostructures is described by the Lambert–Beer law, regardless of the structure or method of preparation of such systems. It is shown that spectroscopy in the UV-Vis regions is a fast, affordable, universal, and inexpensive method of identification and qualitative and quantitative characterization of CNSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. K. J. Klabunde and R. M. Richards, , John Wiley & Sons (2009).

    Google Scholar 

  2. A. Huczko, Appl. Phys. A, 74, 617-638 (2002).

    Article  CAS  Google Scholar 

  3. H. G. Chen, C. X. Li, and Q. Li, Key Engineering Materials, Trans Tech Publications Ltd. (2014).

    Google Scholar 

  4. S. Tomita, M. Fujii, and S. Hayashi, Astrophys. J., 609, 220 (2004).

    Article  CAS  Google Scholar 

  5. V. Mani, S.-M. Chen, and B.-S. Lou, Int. J. Electrochem. Sci., 8, e60 (2013).

    Google Scholar 

  6. C. Botas, P. Alvarez, P. Blanco, et al., Carbon, 65, 156-164 (2013).

    Article  CAS  Google Scholar 

  7. A. L. Higginbotham, D. V. Kosynkin, A. Sinitskii, et al., ACS Nano, 4, 2059-2069 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. M. Abdolkarimi-Mahabadi and M. Manteghian, Fullerenes, Nanotubes, Carbon Nanostructures, 23, 860-864 (2015).

    Article  CAS  Google Scholar 

  9. M. Abdolkarimi-Mahabadi and M. Manteghian, J. Disper. Sci. Technol., 36, 924-931 (2015).

    Article  CAS  Google Scholar 

  10. V. Georgakilas, M. Otyepka, A. B. Bourlinos, et al., Chem. Rev., 112, 6156-6214 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. J. Paredes, S. Villar-Rodil, A. Martinez-Alonso and J. Tascon, Langmuir, 24, 10560-10564 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. E. D. Grayfer, A. S. Nazarov, V. G. Makotchenko, et al., J. Mater. Chem., 21, 3410-3414 (2011).

    Article  CAS  Google Scholar 

  13. N.-W. Pu, C.-A. Wang, Y.-M. Liu, et al., J. Taiwan Inst. Chem. Eng., 43, 140-146 (2012).

    Article  CAS  Google Scholar 

  14. J. Yu, N. Grossiord, C. E. Koning, and J. Loos, Carbon, 45, 618-623 (2007).

    Article  CAS  Google Scholar 

  15. J. Luo, L. J. Cote, V. C. Tung, et al., J. Am. Chem. Soc., 132, 17667-17669 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. F. Liu, M. H. Jang, H. D. Ha, et al., Adv. Mater., 25, 3657-3662 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. V. H. Pham, T. T. Dang, T. V. Cuong, et al., Kor. J. Chem. Eng., 29, 680-685 (2012).

    Article  CAS  Google Scholar 

  18. F. S. Rocha, A. J. Gomes, C. N. Lunardi, et al., Can. J. Chem. Eng., 96, 2512-2517 (2018).

    Article  CAS  Google Scholar 

  19. G. S. Simate, PhD Thesis, University of the Witwatersrand, Johannesburg (2012).

  20. M. J. Green, Polym. Int., 59, 1319-1322 (2010).

    Article  CAS  Google Scholar 

  21. H. Sadeghi and D. Dorranian, J. Theor. Appl. Phys., 10, 7-13 (2016).

    Google Scholar 

  22. J. Njuguna, O. A. Vanli, and R. Liang, J. Spectrosc., 2015 (2015).

  23. C. B. Faust, Modern Chemical Techniques: an Essential Reference for Students and Teachers, Royal Society of Chemistry, Cambridge (1995).

    Google Scholar 

  24. W. Rashmi, A. Ismail, I. Sopyan, et al., J. Exp. Nanosci., 6, 567-579 (2011).

    Article  CAS  Google Scholar 

  25. G. Wang, B. Wang, J. Park, et al., Carbon, 47, 68-72 (2009).

    Article  CAS  Google Scholar 

  26. V. Kravets, A. Grigorenko, R. Nair, et al., Phys. Rev. B, 81, 155413 (2010).

    Article  CAS  Google Scholar 

  27. H. Ghanbari, R. Sarraf-Mamoory, J. Sabbagh Zadeh, et al., Int. J. Opt. Photonics, 7, 113-124 (2013).

    Google Scholar 

  28. Q. Lai, S. Zhu, X. Luo, et al., AIP Adv., 2, 032146 (2012).

    Article  CAS  Google Scholar 

  29. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, et al., ACS Nano, 4, 4806-4814 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. W. Yu, H. Xie, X. Wang, and X. Wang, Nanoscale Res. Lett., 6, 47 (2011).

    Article  PubMed  CAS  Google Scholar 

  31. G. Wang, X. Shen, J. Yao, and J. Park, Carbon, 47, 2049-2053 (2009).

    Article  CAS  Google Scholar 

  32. M. Cayambe, C. Zambrano, T. Tene, et al., Mater. Today: Proc., 37, 4027-4030 (2021).

    CAS  Google Scholar 

  33. J. Leffler, Masters Thesis, Lulea University (2012).

  34. A. Mao, D. Zhang, X. Jin, et al., J. Phys. Chem. Solids, 73, 982-986 (2012).

    Article  CAS  Google Scholar 

  35. W. Gao, PhD Thesis, Rice University,Texas (2012).

  36. D. Li, M. B. Muller, S. Gilje, et al., Nat. Nanotechnol., 3, 101 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. X. Li, X. Wang, L. Zhang, et al., Science, 319, 1229-1232 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. S. Stankovich, R. D. Piner, X. Chen, et al., J. Mater. Chem., 16, 155-158 (2006).

    Article  CAS  Google Scholar 

  39. Y. Liang, D. Wu, X. Feng, and K. Mullen, Adv. Mater., 21, 1679-1683 (2009).

    Article  CAS  Google Scholar 

  40. J. Shen, Y. Hu, C. Li, et al., Small, 5, 82-85 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. M. Quintana, E. Vazquez, and M. Prato, Acc. Chem. Res., 46, 138-148 (2012).

    Article  PubMed  CAS  Google Scholar 

  42. Z. Sun, Z. Yan, J. Yao, et al, Nature, 468, 549 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. C.-J. Shih, S. Lin, R. Sharma, et al., Langmuir, 28, 235-241 (2011).

    Article  PubMed  CAS  Google Scholar 

  44. J. Kusuma, R. G. Balakrishna, S. Patil, et al., Sol. Energy Mater. Sol. Cells, 183, 211-219 (2018).

    Article  CAS  Google Scholar 

  45. G. Borin Barin, A. Fairbrother, L. Rotach, et al., ACS Appl. Nano Mater., 2, 2184-2192 (2019).

    Article  CAS  Google Scholar 

  46. J. Campos-Delgado, J. M. Romo-Herrera, X. Jia, et al., Nano Lett., 8, 2773-2778 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, et al., Nature, 458, 872 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. D. K. James and J. M. Tour, Macromol. Chem. Phys., 213, 1033-1050 (2012).

    Article  CAS  Google Scholar 

  49. L. Valentini, Diam. Relat. Mater., 20, 445-448 (2011).

    Article  CAS  Google Scholar 

  50. Y. Dong, H. Pang, S. Ren, et al., Carbon, 64, 245-251 (2013).

    Article  CAS  Google Scholar 

  51. Y. Zhao, X. Liu, Y. Yang, et al., Fullerenes, Nanotubes, Carbon Nanostructures, 23, 922-929 (2015).

    Article  CAS  Google Scholar 

  52. A. Allahbakhsh and A. R. Bahramian, J. Mol. Liq., 265, 172-180 (2018).

    Article  CAS  Google Scholar 

  53. N. G. Shang, P. Papakonstantinou, S. Sharma, et al., Chem. Commun., 48, 1877-1879 (2012).

    Article  CAS  Google Scholar 

  54. T. Eberlein, U. Bangert, R. Nair, et al., Phys. Rev. B, 77, 233406 (2008).

    Article  CAS  Google Scholar 

  55. M. Feng, H. Zhan, and Y. Chen, Appl. Phys. Lett., 96, 033107 (2010).

    Article  CAS  Google Scholar 

  56. S. Shukla and S. Saxena, Appl.Phys. Lett., 98, 073104 (2011).

    Article  CAS  Google Scholar 

  57. D. Y. Lee, Z. Khatun, J.-H. Lee, et al., Biomacromolecules, 12, 336-341 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. C. Zhang, L. Ren, X. Wang, and T. Liu, J. Phys. Chem. C, 114, 11435-11440 (2010).

    Article  CAS  Google Scholar 

  59. J. Zhang, H. Yang, G. Shen, et al., Chem. Commun., 46, 1112-1114 (2010).

    Article  CAS  Google Scholar 

  60. M. B. Muller, PhD Thesis, University of Wollongong (2011).

  61. J.-S. Lauret, C. Voisin, G. Cassabois, et al., Semicond. Sci. Technol., 19, S486 (2004).

    Article  CAS  Google Scholar 

  62. N. Grossiord, O. Regev, J. Loos, et al., Anal. Chem., 77, 5135-5139 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. L. Jiang, L. Gao, and J. Sun, J. Colloid Interface Sci., 260, 89-94 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. M. Pontoreau, C. Bourda, and J.-F. Silvain, Nanotechnology, 31, 405707 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. W. Dai, J. Wang, X. Gan, et al., Colloids Surf. A, 589, 124369 (2020).

    Article  CAS  Google Scholar 

  66. Z. Li, G. Luo, W. Zhou, et al., Nanotechnology, 17, 3692 (2006).

    Article  CAS  Google Scholar 

  67. J. L. Bahr, E. T. Mickelson, M. J. Bronikowski, et al., Chem. Commun., 193-194 (2001).

  68. S. H. Jeong, K. K. Kim, S. J. Jeong, et al., Synth. Met., 157, 570-574 (2007).

    Article  CAS  Google Scholar 

  69. G. Faiella, P. Musto, G. Di Florio, et al., J. Nanosci. Nanotechnol., 9, 6026-6033 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. A. Nasiri, M. Shariaty-Niasar, A. M. Rashidi and R. Khodafarin, Int. J. Heat Mass Transf., 55, 1529-1535 (2012).

    Article  CAS  Google Scholar 

  71. Y. Bai, I. S. Park, S. J. Lee, et al., Carbon, 49, 3663-3671 (2011).

    Article  CAS  Google Scholar 

  72. S. Attal, R. Thiruvengadathan, and O. Regev, Anal. Chem., 78, 8098-8104 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. H. T. Ham, Y. S. Choi, and I. J. Chung, J. Colloid Interface Sci., 286, 216-223 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. A. L. Alpatova, W. Shan, P. Babica, et al., Water Res., 44, 505-520 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. C. I. Justino, A. C. Freitas, T. A. Rocha-Santos, and A. C. Duarte, Talanta, 89, 105-108 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Y. Tan and D. E. Resasco, J. Phys. Chem. B, 109, 14454-14460 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. B. Yang, L. Ren, L. Li, et al., Analyst, 138, 6671-6676 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. T. Le Ba, O. Mahian, S. Wongwises, and I. M. Szilagyi, J. Therm. Anal. Calorim., 1-28 (2020).

  79. Y. Ye, S. Cai, M. Yan, et al., Appl. Surf. Sci., 284, 107-112 (2013).

    Article  CAS  Google Scholar 

  80. P. Alafogianni, K. Dassios, S. Farmaki, et al., Colloids Surf. A, 495, 118-124 (2016).

    Article  CAS  Google Scholar 

  81. G. A. Rance, D. H. Marsh, R. J. Nicholas, and A. N. Khlobystov, Chem. Phys. Lett., 493, 19-23 (2010).

    Article  CAS  Google Scholar 

  82. J. Fan, Z. Shi, M. Tian, et al., ACS Appl. Mater. Interfaces, 4, 5956-5965 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Y.-R. Son and S.-J. Park, Sci. Rep., 8, 1-10 (2018).

    Google Scholar 

  84. S. Kumar and M. Kaur, Mater. Chem. Phys., 259, 123967 (2021).

    Article  CAS  Google Scholar 

  85. S. Najafishad, H. D. Manesh, S. M. Zebarjad, et al., Arch. Civ. Mech. Eng., 20, 57 (2020).

    Article  Google Scholar 

  86. M. Song, L. Yu, and Y. Wu, J. Nanomater., 2012, 37 (2012).

    Google Scholar 

  87. L. M. Cucci, I. Naletova, G. Consiglio, and C. Satriano, Appl. Sci., 9, 676 (2019).

    Article  CAS  Google Scholar 

  88. N. N. Taheri, B. Ramezanzadeh, M. Mahdavian, and G. Bahlakeh, J. Ind. Eng. Chem., 63, 322-339 (2018).

    CAS  Google Scholar 

  89. J. Charmi, H. Nosrati, J. M. Amjad, et al., Heliyon, 5, e01466 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Y. Chen, J. Qian, N. Wang, J. et al., Inorg. Chem. Commun., 119, 108071 (2020).

    Article  CAS  Google Scholar 

  91. N. Arsalani, S. Bazazi, M. Abuali, and S. Jodeyri, J. Photochem. Photobiol. A, 389, 112207 (2020).

    Article  CAS  Google Scholar 

  92. P. Ghasemipour, M. Fattahi, B. Rasekh, and F. Yazdian, Sci. Rep., 10, 1-16 (2020).

    Article  CAS  Google Scholar 

  93. Y. Xia, B. Cheng, J. Fan, et al., Small, 15, 1902459 (2019).

    Article  CAS  Google Scholar 

  94. R. Paul, P. Kumbhakar, and A. Mitra, J. Exp. Nanosci., 5, 363-373 (2010).

    CAS  Google Scholar 

  95. C. Russo, F. Stanzione, M. Alfe, et al., Combust. Sci. Technol., 184, 1219-1231 (2012).

    Article  CAS  Google Scholar 

  96. Z. Tan, H. Chihara, C. Koike, et al., Astron. J., 140, 1456 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Abdolkarimi-Mahabadi.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 57. No. 3, pp. 160-166, May-June, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdolkarimi-Mahabadi, M., Bayat, A. & Mohammadi, A. Use of UV-Vis Spectrophotometry for Characterization of Carbon Nanostructures: a Review. Theor Exp Chem 57, 191–198 (2021). https://doi.org/10.1007/s11237-021-09687-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-021-09687-1

Keywords

Navigation