Skip to main content
Log in

R11 peptides can promote the molecular imaging of spherical nucleic acids for bladder cancer margin identification

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

One of the critical problems in bladder cancer (BC) management is the local recurrence of disease. However, achieving the accurate delineation of tumor margins intraoperatively remains extremely difficult due to the lack of effective tumor margin recognition technology. Herein, survivin molecular beacon (MB) and R11 peptide-linked spherical nucleic acids (SNAs) were synthesized as nanoprobes (AuNP-MB@R11) for sensitive detection of BC margins. Physicochemical properties proved that R11 peptides and survivin MB were successfully loaded onto the surface of SNAs. AuNP-MB@R11 had good stability against nuclease activity and high sensitivity and specificity to detect survivin single strand DNA (ssDNA) in vitro. According to cytology, R11 peptides could increase the BC targeting ability and membrane penetrability of SNAs. Notably, R11 peptides significantly promoted the disintegration of lysosomes and the release of SNAs to enhance fluorescence imaging quality. Further RNA sequencing proved that some genes and pathways related to endocytosis and lysosomes were significantly regulated, such as AGPAT5, GPD1L, and GRB2. In orthotopic BC models and a clinical sample from a patient with BC, AuNP-MB@R11 showed a more legible cancerous fluorescence margin and offered remarkably improved detection compared to those achieved by SNAs. R11 peptide-linked SNAs present promising potential to identify BC margin, which may help to improve the R0 resection rate in surgery and improve patients’ quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Antoni, S.; Ferlay, J.; Soerjomataram, I.; Znaor, A.; Jemal, A.; Bray, F. Bladder cancer incidence and mortality: A global overview and recent trends. Eur. Urol. 2017, 71, 96–108.

    Article  Google Scholar 

  2. Kamat, A. M.; Hahn, N. M.; Efstathiou, J. A.; Lerner, S. P.; Malmström, P. U.; Choi, W.; Guo, C. C.; Lotan, Y.; Kassouf, W. Bladder cancer. Lancet 2016, 388, 2796–2810.

    Article  Google Scholar 

  3. Cumberbatch, M. G. K.; Foerster, B.; Catto, J. W. F.; Kamat, A. M.; Kassouf, W.; Jübber, I.; Shariat, S. F.; Sylvester, R. J.; Gontero, P. Repeat transurethral resection in non-muscle-invasive bladder cancer: A systematic review. Eur. Urol. 2018, 73, 925–933.

    Article  Google Scholar 

  4. Yossepowitch, O.; Briganti, A.; Eastham, J. A.; Epstein, J.; Graefen, M.; Montironi, R.; Touijer, K. Positive surgical margins after radical prostatectomy: A systematic review and contemporary update. Eur. Urol. 2014, 65, 303–313.

    Article  Google Scholar 

  5. Kates, M.; Ball, M. W.; Chappidi, M. R.; Baras, A. S.; Gordetsky, J.; Sopko, N. A.; Brant, A.; Pierorazio, P. M.; Epstein, J. I.; Schoenberg, M. P. et al. Accuracy of urethral frozen section during radical cystectomy for bladder cancer. Urol. Oncol. 2016, 34, 532.e1–532.e6.

    Article  Google Scholar 

  6. Lenis, A. T.; Lec, P. M.; Chamie, K.; Mshs, M. D. Bladder cancer: A review. JAMA 2020, 324, 1980–1991.

    Article  CAS  Google Scholar 

  7. Davis, R. M.; Kiss, B.; Trivedi, D. R.; Metzner, T. J.; Liao, J. C.; Gambhir, S. S. Surface-enhanced Raman scattering nanoparticles for multiplexed imaging of bladder cancer tissue permeability and molecular phenotype. ACS Nano 2018, 12, 9669–9679.

    Article  CAS  Google Scholar 

  8. Liu, J. J.; Droller, M. J.; Liao, J. C. New optical imaging technologies for bladder cancer: Considerations and perspectives. J. Urol. 2012, 188, 361–368.

    Article  Google Scholar 

  9. Park, H.; Saravanakumar, G.; Kim, J.; Lim, J.; Kim, W. J. Tumor microenvironment sensitive nanocarriers for bioimaging and therapeutics. Adv. Healthc. Mater. 2021, 10, e2000834.

    Article  Google Scholar 

  10. Chinen, A. B.; Guan, C. M.; Ferrer, J. R.; Barnaby, S. N.; Merkel, T. J.; Mirkin, C. A. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem. Rev. 2015, 115, 10530–10574.

    Article  CAS  Google Scholar 

  11. Wu, S. Q.; Chi, C. W.; Yang, C. X.; Yan, X. P. Penetrating peptide-bioconjugated persistent nanophosphors for long-term tracking of adipose-derived stem cells with superior signal-to-noise ratio. Anal. Chem. 2016, 88, 4114–4121.

    Article  CAS  Google Scholar 

  12. Ren, L. J.; Chen, X. X.; Feng, C.; Ding, L.; Liu, X. M.; Chen, T. S.; Zhang, F.; Li, Y. L.; Ma, Z. L.; Tian, B. et al. Visualized and cascade-enhanced gene silencing by smart DNAzyme-graphene nanocomplex. Nano Res. 2020, 13, 2165–2174.

    Article  CAS  Google Scholar 

  13. Zhong, L.; Cai, S. X.; Huang, Y. Q.; Yin, L. T.; Yang, Y. L.; Lu, C. H.; Yang, H. H. DNA octahedron-based fluorescence nanoprobe for dual tumor-related mRNAs detection and imaging. Anal. Chem. 2018, 90, 12059–12066.

    Article  CAS  Google Scholar 

  14. Zhang, J.; Zhao, Q.; Wu, Y. D.; Zhang, B.; Peng, W. P.; Piao, J.; Zhou, Y. R.; Gao, W. C.; Gong, X. Q.; Chang, J. The construction of a novel nucleic acids detection microplatform based on the NSET for one-step detecting TK1-DNA and microRNA-21. Biosens. Bioelectron. 2017, 97, 26–33.

    Article  CAS  Google Scholar 

  15. Xue, J. P.; Shan, L. L.; Chen, H. Y.; Li, Y.; Zhu, H. Y.; Deng, D. W.; Qian, Z. Y.; Achilefu, S.; Gu, Y. Q. Visual detection of STAT5B gene expression in living cell using the hairpin DNA modified gold nanoparticle beacon. Biosens. Bioelectron. 2013, 41, 71–77.

    Article  CAS  Google Scholar 

  16. Li, N.; Chang, C. Y.; Pan, W.; Tang, B. A multicolor nanoprobe for detection and imaging of tumor-related mRNAs in living cells. Angew. Chem., Int. Ed. 2012, 51, 7426–7430.

    Article  CAS  Google Scholar 

  17. Choi, C. H. J.; Hao, L. L.; Narayan, S. P.; Auyeung, E.; Mirkin, C. A. Mechanism for the endocytosis of spherical nucleic acid nanoparticle conjugates. Proc. Natl. Acad. Sci. USA 2013, 110, 7625–7630.

    Article  CAS  Google Scholar 

  18. Ding, F.; Mou, Q. B.; Ma, Y.; Pan, G. F.; Guo, Y. Y.; Tong, G. S.; Choi, C. H. J.; Zhu, X. Y.; Zhang, C. A crosslinked nucleic acid nanogel for effective siRNA delivery and antitumor therapy. Angew. Chem., Int. Ed. 2018, 57, 3064–3068.

    Article  CAS  Google Scholar 

  19. He, K.; Zhu, J. Y.; Gong, L. S.; Tan, Y.; Chen, H. R.; Liang, H. R.; Huang, B. H.; Liu, J. B. In situ self-assembly of near-infrared-emitting gold nanoparticles into body-clearable 1D nanostructures with rapid lysosome escape and fast cellular excretion. Nano Res. 2021, 14, 1087–1094.

    Article  CAS  Google Scholar 

  20. Guidotti, G.; Brambilla, L.; Rossi, D. Cell-penetrating peptides: From basic research to clinics. Trends Pharmacol. Sci. 2017, 38, 406–424.

    Article  CAS  Google Scholar 

  21. Cho, J. H.; Kim, A. R.; Kim, S. H.; Lee, S. J.; Chung, H.; Yoon, M. Y. Development of a novel imaging agent using peptide-coated gold nanoparticles toward brain glioma stem cell marker CD133. Acta Biomater. 2017, 47, 182–192.

    Article  CAS  Google Scholar 

  22. Ruoslahti, E. Tumor penetrating peptides for improved drug delivery. Adv. Drug Deliv. Rev. 2017, 110–111, 3–12.

    Article  Google Scholar 

  23. Nitin, N.; Santangelo, P. J.; Kim, G.; Nie, S. M.; Bao, G. Peptide-linked molecular beacons for efficient delivery and rapid mRNA detection in living cells. Nucleic Acids Res. 2004, 32, e58.

    Article  Google Scholar 

  24. Yan, J.; Zhu, R. Y.; Wu, F.; Zhao, Z. Y.; Ye, H.; Hou, M. Y.; Liu, Y.; Yin, L. C. iRGD-reinforced, photo-transformable nanoclusters toward cooperative enhancement of intratumoral penetration and antitumor efficacy. Nano Res. 2020, 13, 2706–2715.

    Article  CAS  Google Scholar 

  25. Zhou, J.; Fan, J. H.; Hsieh, J. T. Inhibition of mitogen-elicited signal transduction and growth in prostate cancer with a small peptide derived from the functional domain of DOC-2/DAB2 delivered by a unique vehicle. Cancer Res. 2006, 66, 8954–8958.

    Article  CAS  Google Scholar 

  26. Du, Y. Q.; Wang, L.; Wang, W. Y.; Guo, T.; Zhang, M. Z.; Zhang, P.; Zhang, Y. N.; Wu, K. J.; Li, A. X.; Wang, X. Y. et al. Novel application of cell penetrating R11 peptide for diagnosis of bladder cancer. J. Biomed. Nanotechnol. 2018, 14, 161–167.

    Article  CAS  Google Scholar 

  27. Zhang, T. T.; Wu, K. J.; Ding, C.; Sun, K. W.; Guan, Z. F.; Wang, X. Y.; Hsieh, J. T.; He, D. L.; Fan, J. H. Inhibiting bladder tumor growth with a cell penetrating R11 peptide derived from the p53 C-terminus. Oncotarget 2015, 6, 37782–37791.

    Article  Google Scholar 

  28. Zhang, P.; Zhang, Y. N.; Liu, W. H.; Cui, D. X.; Zhao, X. W.; Song, J.; Guo, T.; Ni, H. B.; Zhang, M. Z.; Zhang, H. B. et al. A molecular beacon based surface-enhanced Raman scattering nanotag for noninvasive diagnosis of bladder cancer. J. Biomed. Nanotechnol. 2019, 15, 1589–1597.

    Article  CAS  Google Scholar 

  29. Horstmann, M.; Bontrup, H.; Hennenlotter, J.; Taeger, D.; Weber, A.; Pesch, B.; Feil, G.; Patschan, O.; Johnen, G.; Stenzl, A. et al. Clinical experience with survivin as a biomarker for urothelial bladder cancer. World J. Urol. 2010, 28, 399–404.

    Article  CAS  Google Scholar 

  30. Lang, J. Y.; Zhao, X.; Qi, Y. Q.; Zhang, Y. L.; Han, X. X.; Ding, Y. P.; Guan, J. J.; Ji, T. J.; Zhao, Y.; Nie, G. J. Reshaping prostate tumor microenvironment to suppress metastasis via cancer-associated fibroblast inactivation with peptide-assembly-based nanosystem. ACS Nano 2019, 13, 12357–12371.

    Article  CAS  Google Scholar 

  31. Saqafi, B.; Rahbarizadeh, F. Polyethyleneimine-polyethylene glycol copolymer targeted by anti-HER2 nanobody for specific delivery of transcriptionally targeted tBid containing construct. Artif. Cells Nanomed. Biotechnol. 2019, 47, 501–511.

    Article  CAS  Google Scholar 

  32. Wang, Z.; Li, X. H.; Song, Y. C.; Li, L. H.; Shi, W.; Ma, H. M. An upconversion luminescence nanoprobe for the ultrasensitive detection of hyaluronidase. Anal. Chem. 2015, 87, 5816–5823.

    Article  CAS  Google Scholar 

  33. Bian, F. K.; Sun, L. Y.; Cai, L. J.; Wang, Y.; Zhao, Y. J.; Wang, S. Q.; Zhou, M. T. Molybdenum disulfide-integrated photonic barcodes for tumor markers screening. Biosens. Bioelectron. 2019, 133, 199–204.

    Article  CAS  Google Scholar 

  34. Tao, Y. Y.; Yin, D.; Jin, M. C.; Fang, J.; Dai, T.; Li, Y.; Li, Y. X.; Pu, Q. L.; Xie, G. M. Double-loop hairpin probe and doxorubicin-loaded gold nanoparticles for the ultrasensitive electrochemical sensing of microRNA. Biosens. Bioelectron. 2017, 96, 99–105.

    Article  CAS  Google Scholar 

  35. Azzouzi, S.; Mak, W. C.; Kor, K.; Turner, A. P. F.; Ali, M. B.; Beni, V. An integrated dual functional recognition/amplification bio-label for the one-step impedimetric detection of Micro-RNA-21. Biosens. Bioelectron. 2017, 92, 154–161.

    Article  CAS  Google Scholar 

  36. Liu, L.; Lu, H.; Shi, R. X.; Peng, X. X.; Xiang, Q. W.; Wang, B. W.; Wan, Q. Q.; Sun, Y. J.; Yang, F.; Zhang, G. J. Synergy of peptide-nucleic acid and spherical nucleic acid enabled quantitative and specific detection of tumor exosomal MicroRNA. Anal. Chem. 2019, 91, 13198–13205.

    Article  CAS  Google Scholar 

  37. Zhang, W. L.; Meckes, B.; Mirkin, C. A. Spherical nucleic acids with tailored and active protein coronae. ACS Cent. Sci. 2019, 5, 1983–1990.

    Article  CAS  Google Scholar 

  38. Lin, G.; Zhang, Y.; Zhang, L.; Wang, J. Q.; Tian, Y.; Cai, W.; Tang, S. G.; Chu, C. C.; Zhou, J. J.; Mi, P. et al. Metal-organic frameworks nanoswitch: Toward photo-controllable endo/lysosomal rupture and release for enhanced cancer RNA interference. Nano Res. 2020, 13, 238–245.

    Article  CAS  Google Scholar 

  39. Liu, J. Y.; Zhang, Y.; Zeng, H. L.; Wang, L.; Zhang, Q.; Wu, P.; Liu, X. M.; Xie, H. Y.; Xiang, W.; Liu, B. et al. Fe-doped chrysotile nanotubes containing siRNAs to silence SPAG5 to treat bladder cancer. J. Nanobiotechnol. 2021, 19, 189.

    Article  CAS  Google Scholar 

  40. Andaloussi, S. E. L.; Lehto, T.; Mäger, I.; Rosenthal-Aizman, K.; Oprea, I. I.; Simonson, O. E.; Sork, H.; Ezzat, K.; Copolovici, D. M.; Kurrikoff, K. et al. Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo. Nucleic Acids Res. 2011, 39, 3972–3987.

    Article  Google Scholar 

  41. Bartz, R.; Fan, H. H; Zhang, J. T.; Innocent, N.; Cherrin, C.; Beck, S. C.; Pei, Y.; Momose, A.; Jadhav, V.; Tellers, D. M. et al. Effective siRNA delivery and target mRNA degradation using an amphipathic peptide to facilitate pH-dependent endosomal escape. Biochem. J. 2011, 435, 475–487.

    Article  CAS  Google Scholar 

  42. Lim, C. Y.; Zoncu, R. The lysosome as a command-and-control center for cellular metabolism. J. Cell Biol. 2016, 214, 653–664.

    Article  CAS  Google Scholar 

  43. Wang, S. Y.; Tsun, Z. Y.; Wolfson, R. L.; Shen, K.; Wyant, G. A.; Plovanich, M. E.; Yuan, E. D.; Jones, T. D.; Chantranupong, L.; Comb, W. et al. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 2015, 347, 188–194.

    Article  CAS  Google Scholar 

  44. Liu, Y. J.; Sun, D. D.; Fan, Q.; Ma, Q. L.; Dong, Z. L.; Tao, W. W.; Tao, H. Q.; Liu, Z.; Wang, C. The enhanced permeability and retention effect based nanomedicine at the site of injury. Nano Res. 2020, 13, 564–569.

    Article  Google Scholar 

  45. Pan, Y.; Chang, T.; Marcq, G.; Liu, C. H.; Kiss, B.; Rouse, R.; Mach, K. E.; Cheng, Z.; Liao, J. C. In vivo biodistribution and toxicity of intravesical administration of quantum dots for optical molecular imaging of bladder cancer. Sci. Rep. 2017, 7, 9309.

    Article  Google Scholar 

  46. Li, S. W.; Tian, C. P.; Liu, Y. X.; Wang, Z. H.; Ma, Y.; Han, Z. H.; Du, J. Y.; Zhang, J. N.; Gu, Y. Q. Mechanism of cellular uptake to optimized AuNP beacon for tracing mRNA changes in living cells. Part. Part. Syst. Charact. 2018, 35, 1700331.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81901838), Key research and development plan in Shaanxi province (Nos. 2020SF-123 and 2020SF-195), Medical Technology Plan of Zhejiang Province (No. 2021KY042), and Medical research program of department of science and technology of Xi’an, Shaanxi Province (No. 2019115713YX012SF048(4)). The authors thank Dr. Yu Wang at Instrument Analysis Center of Xi’an Jiaotong University for her assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Wang or Jinhai Fan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, M., Zhang, P., Liang, X. et al. R11 peptides can promote the molecular imaging of spherical nucleic acids for bladder cancer margin identification. Nano Res. 15, 2278–2287 (2022). https://doi.org/10.1007/s12274-021-3807-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3807-z

Keywords

Navigation