Skip to main content
Log in

Cs2TiI6: A potential lead-free all-inorganic perovskite material for ultrahigh-performance photovoltaic cells and alpha-particle detection

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The lead contamination and long-term stability are the two important problems limiting the commercialization of organic-inorganic lead halide perovskites. In this study, through an innovative multi-scale simulation strategy based on the first-principle calculations coupling with drift-diffusion model and Monte Carlo method, a new discovery is shed on the vacancy-ordered double perovskite Cs2TiI6, a potential nontoxic and stable perovskite material for high-performance solar cell and α-particle detection. The excellent photon absorption character and ultrahigh carrier mobility (μn = 2.26×104 cm2/Vs, μp = 7.38×103 cm2/Vs) of Cs2TiI6 induce ultrahigh power conversion efficiency (PCE) for both single-junction solar cell (22.70%) and monolithic all-perovskite tandem solar cell (26.87%). Moreover, the outstanding device performance can be remained even in high energy charge particle detection (α-particle) with excellent charge collection efficiency (CCE = 99.2%) and mobility-lifetime product (μτh = 1×10−3 cm2/V). Furthermore, to our surprise, the solar cell and α-particle detector based on Cs2TiI6 material are able to withstand ultrahigh fluence proton beam up to 1013 and 1015 p/cm2 respectively, which strongly suggests that semiconductor devices based on Cs2TiI6 material are able to apply in the astrospace. The multi-scale simulation connecting from material to device reveals that Cs2TiI6 perovskite has the great potential for photovoltaic cells, α-particle detection and even their space application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma, J.; Su, J.; Lin, Z. H.; Zhou, L.; He, J.; Zhang, J. C.; Liu, S. Z.; Chang, J.; Hao, Y. Improve the oxide/perovskite heterojunction contact for low temperature high efficiency and stable all-inorganic CsPbI2Br perovskite solar cells. Nano Energy 2020, 67, 104241.

    Article  CAS  Google Scholar 

  2. Dohner, E. R.; Jaffe, A.; Bradshaw, L. R.; Karunadasa, H. I. Intrinsic white-light emission from layered hybrid perovskites. J. Am. Chem. Soc. 2014, 136, 13154–13157.

    Article  CAS  Google Scholar 

  3. Leung, S. F.; Ho, K. T.; Kung, P. K.; Hsiao, V. K. S.; Alshareef, H. N.; Wang, Z. L.; He, J. H. A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity. Adv. Mater. 2018, 30, 1704611.

    Article  Google Scholar 

  4. Di, J. Y.; Du, J. H.; Lin, Z. H.; Liu S. Z.; Ouyang, J. Y.; Chang, J. J. Recent advances in resistive random access memory based on lead halide perovskite. InfoMat 2021, 3, 293–315.

    Article  CAS  Google Scholar 

  5. Senanayak, S. P.; Yang, B. Y.; Thomas, T. H.; Giesbrecht, N.; Huang, W. C.; Gann, E.; Nair, B.; Goedel, K.; Guha, S.; Moya, X. et al. Understanding charge transport in lead iodide perovskite thin-film field-effect transistors. Sci. Adv. 2017, 3, e1601935.

    Article  Google Scholar 

  6. Xu, L.; Xiong, Y.; Mei, A. Y.; Hu, Y.; Rong, Y. G.; Zhou, Y. H.; Hu, B.; Han, H. W. Efficient perovskite photovoltaic-thermoelectric hybrid device. Adv. Energy Mater. 2018, 8, 1702937.

    Article  Google Scholar 

  7. Zhang, Y. X.; Liu, Y. C.; Xu, Z.; Ye, H. C.; Yang, Z.; You, J. X.; Liu, M.; He, Y. H.; Kanatzidis, M. G.; Liu, S. Z. Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection. Nat. Commun. 2020, 11, 2304.

    Article  CAS  Google Scholar 

  8. Xu, Q.; Wei, H. T.; Wei, W.; Chuirazzi, W.; DeSantis, D.; Huang, J. S.; Cao, L. Detection of charged particles with a methylammonium lead tribromide perovskite single crystal. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom., Detect. Assoc. Equip. 2017, 848, 106–108.

    Article  CAS  Google Scholar 

  9. Barbé, J.; Hughes, D.; Wei, Z. F.; Pockett, A.; Lee, H. K. H.; Heasman, K. C.; Carnie, M. J.; Watson, T. M.; Tsoi, W. C. Radiation hardness of perovskite solar cells based on aluminum-doped zinc oxide electrode under proton irradiation. Sol. RRL 2019, 3, 1900219.

    Article  Google Scholar 

  10. Malinkiewicz, O.; Imaizumi, M.; Sapkota, S. B.; Ohshima, T.; Öz, S. Radiation effects on the performance of flexible perovskite solar cells for space applications. Emergent Mater. 2020, 3, 9–14.

    Article  CAS  Google Scholar 

  11. Lang, F.; Nickel, N. H.; Bundesmann, J.; Seidel, S.; Denker, A.; Albrecht, S.; Brus, V. V.; Rappich, J.; Rech, B.; Landi, G. et al. Radiation hardness and self-healing of perovskite solar cells. Adv. Mater. 2016, 28, 8726–8731.

    Article  CAS  Google Scholar 

  12. Lang, F.; Jošt, M.; Bundesmann, J.; Denker, A.; Albrecht, S.; Landi, G.; Neitzert, H. C.; Rappich, J.; Nickel, N. H. Efficient minority carrier detrapping mediating the radiation hardness of triple-cation perovskite solar cells under proton irradiation. Energy Environ. Sci. 2019, 12, 1634–1647.

    Article  CAS  Google Scholar 

  13. Lang, F.; Jošt, M.; Frohna, K.; Köhnen, E.; Al-Ashouri, A.; Bowman, A. R.; Bertram, T.; Morales-Vilches, A. B.; Koushik, D.; Tennyson, E. M. et al. Proton radiation hardness of perovskite tandem photovoltaics. Joule 2020, 4, 1054–1069.

    Article  CAS  Google Scholar 

  14. Babayigit, A.; Ethirajan, A.; Muller, M.; Conings, B. Toxicity of organometal halide perovskite solar cells. Nat. Mater. 2016, 15, 247–251.

    Article  CAS  Google Scholar 

  15. Giustino, F.; Snaith, H. J. Toward lead-free perovskite solar cells. ACS Energy Lett. 2016, 1, 1233–1240.

    Article  CAS  Google Scholar 

  16. Di, J. Y.; Chang, J. J.; Liu, S. Z. Recent progress of two-dimensional lead halide perovskite single crystals: Crystal growth, physical properties, and device applications. EcoMat 2020, 2, e12036.

    Article  CAS  Google Scholar 

  17. Leijtens, T.; Bush, K.; Cheacharoen, R.; Beal, R.; Bowring, A.; McGehee, M. D. Towards enabling stable lead halide perovskite solar cells; Interplay between structural, environmental, and thermal stability. J. Mater. Chem. A 2017, 5, 11483–11500.

    Article  CAS  Google Scholar 

  18. Li, Z.; Yang, M. J.; Park, J. S.; Wei, S. H.; Berry, J. J.; Zhu, K. Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 2016, 28, 284–292.

    Article  Google Scholar 

  19. Greul, E.; Petrus, M. L.; Binek, A.; Docampo, P.; Bein, T. Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications. J. Mater. Chem. A 2017, 5, 19972–19981.

    Article  CAS  Google Scholar 

  20. Volonakis, G.; Haghighirad, A. A.; Milot, R. L.; Sio, W. H.; Filip, M. R.; Wenger, B.; Johnston, M. B.; Herz, L. M.; Snaith, H. J.; Giustino, F. Cs2InAgCl6: A new lead-free halide double perovskite with direct band gap. J. Phys. Chem. Lett. 2017, 8, 772–778.

    Article  CAS  Google Scholar 

  21. Zhang, H.; Su, J.; Hou, J.; Lin, Z. H.; Hu, Z. S.; Chang, J. J.; Zhang, J. C.; Hao, Y. Potential applications of halide double perovskite Cs2AgInX6 (X = Cl, Br) in flexible optoelectronics: Unusual effects of uniaxial strains. J. Phys. Chem. Lett. 2019, 10, 1120–1125.

    Article  CAS  Google Scholar 

  22. Park, B. W.; Philippe, B.; Zhang, X. L.; Rensmo, H.; Boschloo, G.; Johansson, E. M. J. Bismuth based hybrid perovskites A3Bi2I9 (A: Methylammonium or Cesium) for solar cell application. Adv. Mater. 2015, 27, 6806–6813.

    Article  CAS  Google Scholar 

  23. Ju, M. G.; Dai, J.; Ma, L.; Zeng, X. C. Lead-free mixed tin and germanium perovskites for photovoltaic application. J. Am. Chem. Soc. 2017, 139, 8038–8043.

    Article  CAS  Google Scholar 

  24. Greul, E.; Petrus, M. L.; Binek, A.; Docampo, P.; Bein, T. Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications. J. Mater. Chem. A 2017, 5, 19972–19981.

    Article  CAS  Google Scholar 

  25. Gao, W. Y.; Ran, C. X.; Xi, J.; Jiao, B.; Zhang, W. W.; Wu, M. C.; Hou, X.; Wu, Z. X. High-quality Cs2AgBiBr6 double perovskite film for lead-free inverted planar heterojunction solar cells with 2.2% efficiency. ChemPhysChem 2018, 19, 1696–1700.

    Article  CAS  Google Scholar 

  26. Qiu, X. F.; Jiang, Y. N.; Zhang, H. L.; Qiu, Z. W.; Yuan, S.; Wang, P.; Cao, B. Q. Lead-free mesoscopic Cs2SnI6 perovskite solar cells using different nanostructured ZnO nanorods as electron transport layers. Phys. Status Solidi 2016, 10, 587–591.

    CAS  Google Scholar 

  27. Chen, M.; Ju, M. G.; Carl, A. D.; Zong, Y. X.; Grimm, R. L.; Gu, J. J.; Zeng, X. C.; Zhou, Y. Y.; Padture, N. P. Cesium titanium(IV) bromide thin films based stable lead-free perovskite solar cells. Joule 2018, 2, 558–570.

    Article  CAS  Google Scholar 

  28. McCall, K. M.; Liu, Z. F.; Trimarchi, G.; Stoumpos, C. C.; Lin, W. W.; He, Y. H.; Hadar, I.; Kanatzidis, M. G.; Wessels, B. W. α-particle detection and charge transport characteristics in the A3M2I9 defect perovskites (A = Cs, Rb; M = Bi, Sb). ACS Photonics 2018, 5, 3748–3762.

    Article  CAS  Google Scholar 

  29. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  30. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  31. Zhao, P.; Liu, Z. Y.; Lin, Z. H.; Chen, D. Z.; Su, J.; Zhang, C. F.; Zhang, J. C.; Chang, J. J.; Hao, Y. Device simulation of inverted CH3NH3PbI3−xClx perovskite solar cells based on PCBM electron transport layer and NiO hole transport layer. Sol. Energy 2018, 169, 11–18.

    Article  CAS  Google Scholar 

  32. Zhao, P.; Lin, Z. H.; Wang, J. P.; Yue, M.; Su, J.; Zhang, J. C.; Chang, J. J.; Hao, Y. Numerical simulation of planar heterojunction perovskite solar cells based on SnO2 electron transport layer. ACS Appl. Energy Mater. 2019, 2, 4504–4512.

    Article  CAS  Google Scholar 

  33. Zhao, P.; Feng, L. P.; Lin, Z. H.; Wang, J. P.; Su, J.; Hu, Z. S.; Zhang, J. C.; Ouyang, X. P.; Chang, J. J.; Hao, Y. Theoretical analysis of two-terminal and four-terminal perovskite/copper indium gallium selenide tandem solar cells. Sol. RRL 2019, 3, 1900303.

    Article  CAS  Google Scholar 

  34. Zhao, P.; Su, J.; Lin, Z. H.; Wang, J. P.; Zhang, J. C.; Hao, Y.; Ouyang, X. P.; Chang, J. J. The crystal anisotropy effect of MAPbI3 perovskite on optoelectronic devices. Mater. Today Energy 2020, 17, 100481.

    Article  Google Scholar 

  35. Zhao, P.; Su, J.; Lin, Z. H.; Wang, J. P.; Zhang, J. C.; Hao, Y.; Ouyang, X. P.; Chang, J. J. All-inorganic CsPbIxBr3−x perovskite solar cells: Crystal anisotropy effect. Adv. Theory Simul. 2020, 3, 2000055.

    Article  CAS  Google Scholar 

  36. Conway, A. M.; Wang, T. F.; Deo, N.; Cheung, C. L.; Nikolić, R. J. Numerical simulations of pillar structured solid state thermal neutron detector: Efficiency and gamma discrimination. IEEE Trans. Nucl. Sci. 2009, 56, 2802–2807.

    Article  CAS  Google Scholar 

  37. Tsai, H.; Nie, W. Y.; Blancon, J. C.; Stoumpos, C. C.; Asadpour, R.; Harutyunyan, B.; Neukirch, A. J.; Verduzco, R.; Crochet, J. J.; Tretiak, S. et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature 2016, 536, 312–316.

    Article  CAS  Google Scholar 

  38. Zhao, P.; Yue, M.; Lei, C.; Lin, Z. H.; Su, J.; Chen, D. Z.; Zhang, C. F.; Zhang, J. C.; Chang, J. J.; Hao, Y. Device simulation of organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cell with various antireflection materials. IEEE J. Photovolt. 2018, 8, 1685–1691.

    Article  Google Scholar 

  39. Dong, Q. F.; Fang, Y. J.; Shao, Y. C.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. S. Electron-hole diffusion lengths >175 mm in solution-grown CH3NH3PbI3 single crystals. Science 2015, 347, 967–970.

    Article  CAS  Google Scholar 

  40. Minemoto, T.; Kawano, Y.; Nishimura, T.; Shen, Q.; Yoshino, K.; Iikubo, S.; Hayase, S.; Chantana, J. Theoretical analysis of band alignment at back junction in Sn-Ge perovskite solar cells with inverted p-i-n structure. Sol. Energy Mater. Sol. Cells 2020, 206, 110268.

    Article  CAS  Google Scholar 

  41. Frankevich, E.; Maruyama, Y.; Ogata, H. Mobility of charge carriers in vapor-phase grown C60 single crystal. Chem. Phys. Lett. 1993, 214, 39–44.

    Article  CAS  Google Scholar 

  42. Chelliah, C. R. A. J.; Szymanik, B.; Swaminathan, R. Study of electron transport in fullerene (C60) quantum confined channel layer based field effect transistor. Int. J. Adv. Eng. Res. Sci. 2017, 4, 119–125.

    Article  Google Scholar 

  43. Peumans, P.; Forrest, S. R. Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells. Appl. Phys. Lett. 2001, 79, 126–128.

    Article  CAS  Google Scholar 

  44. Ye, F.; Lin, H.; Wu, H. D.; Zhu, L.; Huang, Z. F.; Ouyang, D.; Niu, G. D.; Choy, W. C. H. High-quality cuboid CH3NH3PbI3 single crystals for high performance X-ray and photon detectors. Adv. Funct. Mater. 2019, 29, 1806984.

    Article  Google Scholar 

  45. Brendel, W.; Samartzis, T.; Brendel, C.; Krebs, B. TG and DTA investigations on hexaiodometallates. Thermochim. Acta 1985, 83, 167–172.

    Article  CAS  Google Scholar 

  46. Debbichi, L.; Lee, S.; Cho, H.; Rappe, A. M.; Hong, K. H.; Jang, M. S.; Kim, H. Mixed valence perovskite Cs2Au2I6: A potential material for thin-film Pb-free photovoltaic cells with ultrahigh efficiency. Adv. Mater. 2018, 30, 1707001.

    Article  Google Scholar 

  47. Ahmed, S.; Jannat, F.; Khan, M. A. K.; Alim, M. A. Numerical development of eco-friendly Cs2TiBr6 based perovskite solar cell with all-inorganic charge transport materials via SCAPS-1D. Optik 2021, 225, 165765.

    Article  CAS  Google Scholar 

  48. Lin, R. X.; Xiao, K.; Qin, Z. Y.; Han, Q. L.; Zhang, C. F.; Wei, M. Y.; Saidaminov, M. I.; Gao, Y.; Xu, J.; Xiao, M. et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink. Nat. Energy 2019, 4, 864–873.

    Article  CAS  Google Scholar 

  49. Morita, Y.; Ohshima, T.; Nashiyama, I.; Yamamoto, Y.; Kawasaki, O.; Matsuda, S. Anomalous degradation in silicon solar cells subjected to high-fluence proton and electron irradiations. J. Appl. Phys. 1997, 81, 6491–6493.

    Article  CAS  Google Scholar 

  50. Ohshima, T.; Sato, S. I.; Nakamura, T.; Imaizumi, M.; Sugaya, T.; Matsubara, K.; Niki, S.; Takeda, A.; Okano, Y. Electrical performance degradation of GaAs solar cells with InGaAs quantum dot layers due to proton irradiation. In 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, 2013, pp 2779–2783.

  51. He, Y. H.; Liu, Z. F.; McCall, K. M.; Lin, W. W.; Chung, D. Y.; Wessels, B. W.; Kanatzidis, M. G. Perovskite CsPbBr3 single crystal detector for alpha-particle spectroscopy. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom., Detect. Assoc. Equip. 2019, 922, 217–221.

    Article  CAS  Google Scholar 

  52. Nava, F.; Vittone, E.; Vanni, P.; Fuochi, P. G.; Lanzieri, C. Radiation tolerance of epitaxial silicon carbide detectors for electrons and γ-rays. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom., Detect. Assoc. Equip. 2003, 514, 126–134.

    Article  CAS  Google Scholar 

  53. Nava, F.; Vanni, P.; Canali, C.; Apostolo, G.; Manfredotti, C.; Polesello, P.; Vittone, E. Analysis of uniformity of as prepared and irradiated S.I. GaAs radiation detectors. IEEE Trans. Nucl. Sci. 1998, 45, 609–616.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 61704131, 61804111, and 11435010), Key Research and Development Program of Shaanxi Province (No. 2020GY-310), the Fundamental Research Funds for the Central Universities, the Innovation Fund of Xidian University, Initiative Postdocs Supporting Program (No. BX20180234), Project funded by China Postdoctoral Science Foundation (No. 2018M643578). The numerical calculations in this paper were done on the HPC system of Xidian University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingjing Chang.

Electronic Supplementary Material

12274_2021_3801_MOESM1_ESM.pdf

Cs2TiI6: A potential lead-free all-inorganic perovskite material for ultrahigh-performance photovoltaic cells and alpha-particle detection

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, P., Su, J., Guo, Y. et al. Cs2TiI6: A potential lead-free all-inorganic perovskite material for ultrahigh-performance photovoltaic cells and alpha-particle detection. Nano Res. 15, 2697–2705 (2022). https://doi.org/10.1007/s12274-021-3801-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3801-5

Keywords

Navigation