Skip to main content

Advertisement

Log in

Morita–Baylis–Hillman adducts derived from thymol: synthesis, in silico studies and biological activity against Giardia lamblia

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Giardiasis is a neglected disease, and there is a need for new molecules with less side effects and better activity against resistant strains. This work describes the evaluation of the giardicidal activity of thymol derivatives produced from the Morita–Baylis–Hillman reaction. Thymol acrylate was reacted with different aromatic aldehydes, using 1,4-diazabicyclo[2.2.2]octane (DABCO) as a catalyst. Eleven adducts (8 of them unpublished) with yields between 58 and 80% were obtained from this reaction, which were adequately characterized. The in silico prediction showed theoretical bioavailability after oral administration as well as antiparasitic activity against Giardia lamblia. Compound 4 showed better biological activity against G. lamblia. In addition to presenting antigiardial activity 24 times better than thymol, this MBHA was obtained in a short reaction time (3 h) with a yield (80%) superior to the other investigated molecules. The molecule was more active than the precursors (thymol and MBHA 12) and did not show cytotoxicity against HEK-293 or HT-29 cells. In conclusion, this study presents a new class of drugs with better antigiardial activity in relation to thymol, acting as a basis for the synthesis of new bioactive molecules.

Graphic abstract

Molecular hybridization technique combined with the Morita–Baylis–Hillman reaction provided new thymol derivatives with giardicidal activity superior to the precursor molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Méabed EMH, Abou-Sreea AIB, Roby MHH (2018) Chemical analysis and giardicidal effectiveness of the aqueous extract of Cymbopogon Citratus Stapf. Parasitol Res 117:1745–1755. https://doi.org/10.1007/s00436-018-5855-1

    Article  PubMed  Google Scholar 

  2. Matadamas-Martínez F, Nogueda-Torres B, Castillo R et al (2020) Characterisation of the in vitro activity of a Nitazoxanide-N-methyl-1H-benzimidazole hybrid molecule against albendazole and nitazoxanide susceptible and resistant strains of Giardia intestinalis and its in vivo Giardicidal activity. Mem Inst Oswaldo Cruz 115:1745–1755. https://doi.org/10.1590/0074-02760190348

    Article  CAS  Google Scholar 

  3. Dyab AK, Yones DA, Ibraheim ZZ, Hassan TM (2016) Anti-giardial therapeutic potential of dichloromethane extracts of Zingiber officinale and Curcuma longa in vitro and in vivo. Parasitol Res 115:2637–2645. https://doi.org/10.1007/s00436-016-5010-9

    Article  PubMed  Google Scholar 

  4. Wei F, Huang H-Y, Zhong N-J et al (2015) Highly enantioselective [3 + 2]-annulation of isatin-derived morita–baylis–hillman adducts with cyclic sulfonimines. Org Lett 17:1688–1691. https://doi.org/10.1021/acs.orglett.5b00456

    Article  CAS  PubMed  Google Scholar 

  5. Lima Junior CG, Vasconcellos MLAA (2012) Morita–baylis–hillman adducts: biological activities and potentialities to the discovery of new cheaper drugs. Bioorg Med Chem 20:3954–3971. https://doi.org/10.1016/j.bmc.2012.04.06

    Article  CAS  PubMed  Google Scholar 

  6. Pellissier H (2017) Recent developments in the asymmetric organocatalytic Morita−Baylis−Hillman reaction. Tetrahedron 73:2831–2861. https://doi.org/10.1016/j.tet.2017.04.008

    Article  CAS  Google Scholar 

  7. Brito VBM, Santos GF, Silva TDS et al (2020) Synthesis, anti-proliferative activity, theoretical and 1H NMR experimental studies of Morita–Baylis–Hillman adducts from isatin derivatives. Mol Divers 24:265–281. https://doi.org/10.1007/s11030-019-09950-7

    Article  CAS  PubMed  Google Scholar 

  8. da Silva WAV, Rodrigues DC, de Oliveira RG et al (2016) Synthesis and activity of novel homodimers of Morita–Baylis–Hillman adducts against leishmania donovani: a twin drug approach. Bioorg Med Chem Lett 26:4523–4526. https://doi.org/10.1016/J.BMCL.2016.07.022

    Article  PubMed  Google Scholar 

  9. Fershtat LL, Makhova NN (2017) Molecular hybridization tools in the development of furoxan-based no-donor prodrugs. ChemMedChem 12:622–638. https://doi.org/10.1002/cmdc.201700113

    Article  CAS  PubMed  Google Scholar 

  10. Singh G, Arora A, Mangat SS et al (2016) Design, synthesis and biological evaluation of chalconyl blended triazole allied organosilatranes as giardicidal and trichomonacidal agents. Eur J Med Chem 108:287–300. https://doi.org/10.1016/j.ejmech.2015.11.029

    Article  CAS  PubMed  Google Scholar 

  11. Taha M, Ismail NH, Ali M et al (2017) Molecular hybridization conceded exceptionally potent quinolinyl-oxadiazole hybrids through phenyl linked thiosemicarbazide antileishmanial scaffolds: In silico validation and SAR studies. Bioorg Chem 71:192–200. https://doi.org/10.1016/j.bioorg.2017.02.005

    Article  CAS  PubMed  Google Scholar 

  12. Marchese A, Orhan IE, Daglia M et al (2016) Antibacterial and antifungal activities of thymol: a brief review of the literature. Food Chem 210:402–414. https://doi.org/10.1016/j.foodchem.2016.04.111

    Article  CAS  PubMed  Google Scholar 

  13. Salehi B, Mishra AP, Shukla I et al (2018) Thymol, thyme, and other plant sources: health and potential uses. Phyther Res 32:1688–1706. https://doi.org/10.1002/ptr.6109

    Article  Google Scholar 

  14. Costa MF, Durço AO, Rabelo TK et al (2019) Effects of carvacrol, thymol and essential oils containing such monoterpenes on wound healing: a systematic review. J Pharm Pharmacol 71:141–155. https://doi.org/10.1111/jphp.13054

    Article  CAS  PubMed  Google Scholar 

  15. Rajput JD, Bagul SD, Pete UD et al (2018) Perspectives on medicinal properties of natural phenolic monoterpenoids and their hybrids. Mol Divers 22:225–245. https://doi.org/10.1007/s11030-017-9787-y

    Article  CAS  PubMed  Google Scholar 

  16. André WPP, Cavalcante GS, Ribeiro WLC et al (2017) Anthelmintic effect of thymol and thymol acetate on sheep gastrointestinal nematodes and their toxicity in mice. Rev Bras Parasitol Veterinária 26:323–330. https://doi.org/10.1590/s1984-29612017056

    Article  CAS  Google Scholar 

  17. de Morais SM, Vila-Nova NS, Bevilaqua CML et al (2014) Thymol and eugenol derivatives as potential antileishmanial agents. Bioorg Med Chem 22:6250–6255. https://doi.org/10.1016/j.bmc.2014.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Elissondo MC, Pensel PE, Denegri GM (2013) Could thymol have effectiveness on scolices and germinal layer of hydatid cysts? Acta Trop 125:251–257. https://doi.org/10.1016/j.actatropica.2012.12.007

    Article  CAS  PubMed  Google Scholar 

  19. Chang H-T, Hsu S-S, Chou C-T et al (2011) Effect of thymol on ca2+ homeostasis and viability in MG63 human osteosarcoma cells. Pharmacology 88:201–212. https://doi.org/10.1159/000331864

    Article  CAS  PubMed  Google Scholar 

  20. De La Chapa JJ, Singha PK, Lee DR, Gonzales CB (2018) Thymol inhibits oral squamous cell carcinoma growth via mitochondria-mediated apoptosis. J Oral Pathol Med 47:674–682. https://doi.org/10.1111/jop.12735

    Article  CAS  Google Scholar 

  21. El-Sayed E, Abd-Allah A, MansourEL-Arabey AA (2015) Thymol and carvacrol prevent Cisplatin-induced nephrotoxicity by abrogation of oxidative stress, inflammation, and apoptosis in rats. J Biochem Mol Toxicol 29:165–172. https://doi.org/10.1002/jbt.21681

    Article  CAS  PubMed  Google Scholar 

  22. Alam K, Nagi MN, Badary OA et al (1999) The protective action of thymol against carbon tetrachloride hepatotoxicity in mice. Pharmacol Res 40:159–163. https://doi.org/10.1006/phrs.1999.0472

    Article  CAS  PubMed  Google Scholar 

  23. Güvenç M, Cellat M, Gökçek İ et al (2019) Effects of thymol and carvacrol on sperm quality and oxidant/antioxidant balance in rats. Arch Physiol Biochem 125:396–403. https://doi.org/10.1080/13813455.2018.1476979

    Article  CAS  PubMed  Google Scholar 

  24. Botelho MA, Barros G, Queiroz DB et al (2016) Nanotechnology in phytotherapy: antiinflammatory effect of a nanostructured thymol gel from lippia sidoides in acute periodontitis in rats. Phyther Res 30:152–159. https://doi.org/10.1002/ptr.5516

    Article  CAS  Google Scholar 

  25. Hezarjaribi HZ, Elmi T, Dayer MS et al (2015) A systematic review of the effects of Iranian pharmaceutical plant extracts on Giardia lamblia. Asian Pacific J Trop Dis 5:925–929. https://doi.org/10.1016/S2222-1808(15)60959-8

    Article  Google Scholar 

  26. Adame-Gallegos JR, Andrade-Ochoa S, Nevarez-Moorillon GV (2016) Potential use of Mexican oregano essential oil against parasite, fungal and bacterial pathogens. J Essent Oil Bear Plants 19:553–567. https://doi.org/10.1080/0972060X.2015.1116413

    Article  CAS  Google Scholar 

  27. Xavier F, Rodrigues K, de Oliveira R et al (2016) Synthesis and In Vitro Anti Leishmania amazonensis biological screening of Morita-Baylis-Hillman adducts prepared from Eugenol. Thymol Carvacrol Mol 21:1483. https://doi.org/10.3390/molecules21111483

    Article  CAS  Google Scholar 

  28. Singh G, Arora A, Kalra P et al (2019) A strategic approach to the synthesis of ferrocene appended chalcone linked triazole allied organosilatranes: antibacterial, antifungal, antiparasitic and antioxidant studies. Bioorg Med Chem 27:188–195. https://doi.org/10.1016/j.bmc.2018.11.038

    Article  CAS  PubMed  Google Scholar 

  29. Fernandes FS, Santos H, Lima SR et al (2020) Discovery of highly potent and selective antiparasitic new oxadiazole and hydroxy-oxindole small molecule hybrids. Eur J Med Chem 201:112418. https://doi.org/10.1016/j.ejmech.2020.112418

    Article  CAS  PubMed  Google Scholar 

  30. Camargo J do NA, Pianoski KE, Dos Santos MG, et al (2020) Antiparasitic behavior of trifluoromethylated pyrazole 2-Amino-1,3,4-thiadiazole hybrids and their analogues: synthesis and structure-activity relationship. Front Pharmacol 11: 591570. https://doi.org/10.3389/fphar.2020.591570

  31. Bokosi FRB, Beteck RM, Laming D et al (2021) Synthesis of 2-( N -cyclicamino)quinoline combined with methyl ( E )-3-(2/3/4-aminophenyl)acrylates as potential antiparasitic agents. Arch Pharm (Weinheim). https://doi.org/10.1002/ardp.202000331

    Article  Google Scholar 

  32. Nogara PA, Saraiva RDA, Caeran Bueno D et al (2015) Virtual screening of acetylcholinesterase inhibitors using the Lipinski’s rule of five and ZINC databank. Biomed Res Int 2015:1–8. https://doi.org/10.1155/2015/870389

    Article  CAS  Google Scholar 

  33. Lagunin AA, Dubovskaja VI, Rudik AV et al (2018) CLC-Pred: a freely available web-service for in silico prediction of human cell line cytotoxicity for drug-like compounds. PLoS ONE. https://doi.org/10.1371/journal.pone.0191838

    Article  PubMed  PubMed Central  Google Scholar 

  34. Filimonov DA, Lagunin AA, Gloriozova TA et al (2014) Prediction of the biological activity spectra of organic compounds using the pass online web resource. Chem Heterocycl Compd 50:444–457. https://doi.org/10.1007/s10593-014-1496-1

    Article  CAS  Google Scholar 

  35. Poroikov VV, Filimonov DA, Ihlenfeldt W-D et al (2003) PASS biological activity spectrum predictions in the enhanced open NCI database browser. J Chem Inf Comput Sci 43:228–236. https://doi.org/10.1021/ci020048r

    Article  CAS  PubMed  Google Scholar 

  36. Lopez-Romero G, Quintero J, Astiazarán-García H, Velazquez C (2015) Host defences against Giardia lamblia. Parasite Immunol 37:394–406. https://doi.org/10.1111/pim.12210

    Article  CAS  PubMed  Google Scholar 

  37. Dantas TJ, Daly OM, Morrison CG (2012) Such small hands: the roles of centrins/caltractins in the centriole and in genome maintenance. Cell Mol Life Sci 69:2979–2997. https://doi.org/10.1007/s00018-012-0961-1

    Article  CAS  PubMed  Google Scholar 

  38. Pathuri P, Nguyen ET, Ozorowski G et al (2009) Apo and calcium-bound crystal structures of cytoskeletal protein alpha-14 giardin (annexin e1) from the intestinal protozoan parasite Giardia lamblia. J Mol Biol 385:1098–1112. https://doi.org/10.1016/j.jmb.2008.11.012

    Article  CAS  PubMed  Google Scholar 

  39. Einarsson E, Ástvaldsson Á, Hultenby K et al (2016) Comparative cell biology and evolution of annexins in diplomonads. Mol Biol Physiol 1:e00032-e115. https://doi.org/10.1128/mSphere.00032-15

    Article  CAS  Google Scholar 

  40. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26. https://doi.org/10.1016/S0169-409X(00)00129-0

    Article  CAS  PubMed  Google Scholar 

  41. Adkins CE, Barber KR, Lockman PR (2013) Crossing the barrier: the role of the blood–brain barrier in treating mental illness. Biochem (Lond) 35:4–8. https://doi.org/10.1042/BIO03503004

    Article  CAS  Google Scholar 

  42. Gillet VJ, Leach AR (2007) Chemoinformatics. In: Comprehensive medicinal chemistry II. Elsevier, Amsterdam 235–264. https://doi.org/10.1016/B0-08-045044-X/00085-7

  43. Paramashivam SK, Elayaperumal K, Natarajan B et al (2015) In silico pharmacokinetic and molecular docking studies of small molecules derived from Indigofera aspalathoides Vahl targeting receptor tyrosine kinases. Bioinformation 11:73–84. https://doi.org/10.6026/97320630011073

    Article  PubMed  PubMed Central  Google Scholar 

  44. Aungst BJ (2017) Optimizing oral bioavailability in drug discovery: an overview of design and testing strategies and formulation options. J Pharm Sci 106:921–929. https://doi.org/10.1016/j.xphs.2016.12.002

    Article  CAS  PubMed  Google Scholar 

  45. Park SY, Kang Z, Thapa P et al (2019) Development of sorafenib loaded nanoparticles to improve oral bioavailability using a quality by design approach. Int J Pharm 566:229–238. https://doi.org/10.1016/j.ijpharm.2019.05.064

    Article  CAS  PubMed  Google Scholar 

  46. Paulai FR, Serrano SHP, Tavares LC (2009) Aspectos mecanísticos da bioatividade e toxicidade de nitrocompostos. Quim Nova 32:1013–1020. https://doi.org/10.1590/S0100-40422009000400032

    Article  Google Scholar 

  47. Hernandes M, Cavalcanti SM, Moreira DR et al (2010) Halogen atoms in the modern medicinal chemistry: hints for the drug design. Curr Drug Targets 11:303–314. https://doi.org/10.2174/138945010790711996

    Article  CAS  PubMed  Google Scholar 

  48. Ud-Din S, Bayat A (2017) Non-animal models of wound healing in cutaneous repair: in silico, in vitro, ex vivo, and in vivo models of wounds and scars in human skin. Wound Repair Regen 25:164–176. https://doi.org/10.1111/wrr.12513

    Article  PubMed  Google Scholar 

  49. Junior CGL, de Assis PAC, Silva FPL et al (2010) Efficient synthesis of 16 aromatic Morita–Baylis–Hillman adducts: biological evaluation on leishmania amazonensis and leishmania chagasi. Bioorg Chem 38:279–284. https://doi.org/10.1016/j.bioorg.2010.08.002

    Article  CAS  PubMed  Google Scholar 

  50. Ghosh AP, Aycock C, Schwebke JR (2018) In vitro study of the susceptibility of clinical isolates of trichomonas vaginalis to metronidazole and secnidazole. Antimicrob Agents Chemother 62:e02329-e2417. https://doi.org/10.1128/AAC.02329-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tiash S, Saunders J, Hart CJS et al (2020) An image-based pathogen box screen identifies new compounds with anti-Giardia activity and highlights the importance of assay choice in phenotypic drug discovery. Int J Parasitol Drugs Drug Resist 12:60–67. https://doi.org/10.1016/j.ijpddr.2020.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  52. Islam MT, Khalipha ABR, Bagchi R et al (2019) Anticancer activity of thymol: a literature-based review and docking study with emphasis on its anticancer mechanisms. IUBMB Life 71:9–19. https://doi.org/10.1002/iub.1935

    Article  CAS  PubMed  Google Scholar 

  53. Keister DB (1983) Axenic culture of giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg 77:487–488. https://doi.org/10.1016/0035-9203(83)90120-7

    Article  CAS  PubMed  Google Scholar 

  54. Sagher E, Hernandez L, Heywood C et al (2014) The small molecule NSC676914A is cytotoxic and differentially affects NFκB signaling in ovarian cancer cells and HEK293 cells. Cancer Cell Int 14:75. https://doi.org/10.1186/s12935-014-0075-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Parasuraman S (2011) Prediction of activity spectra for substances. J Pharmacol Pharmacother 2:52. https://doi.org/10.4103/0976-500X.77119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ertl P, Rohde B, Selzer P (2000) Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem 43:3714–3717. https://doi.org/10.1021/jm000942e

    Article  CAS  PubMed  Google Scholar 

  57. Calzada F, Cerda-García-Rojas CM, Meckes M et al (1999) Geranins A and B, new antiprotozoal A-Type proanthocyanidins from geranium niveum. J Nat Prod 62:705–709. https://doi.org/10.1021/np980467b

    Article  CAS  PubMed  Google Scholar 

  58. Bénéré E, da Luz RAI, Vermeersch M et al (2007) A new quantitative in vitro microculture method for Giardia duodenalis trophozoites. J Microbiol Methods 71:101–106. https://doi.org/10.1016/j.mimet.2007.07.014

    Article  CAS  PubMed  Google Scholar 

  59. O’Brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem. https://doi.org/10.1046/j.1432-1327.2000.01606.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the Brazilian agencies National Council for Scientific and Technological Development (CNPq), Minas Gerais Research Foundation (FAPEMIG), Coordination for the Improvement of Higher Education Personnel (CAPES), Federal Universities of Paraíba (UFPB) and Minas Gerais (UFMG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio G. Lima-Junior.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest, financial or otherwise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1380 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xavier, F.J.S., Lira, A.B., Verissimo, G.C. et al. Morita–Baylis–Hillman adducts derived from thymol: synthesis, in silico studies and biological activity against Giardia lamblia. Mol Divers 26, 1969–1982 (2022). https://doi.org/10.1007/s11030-021-10308-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-021-10308-1

Keywords

Navigation