Skip to main content
Log in

Nitrite reductase activity within an antiparallel de novo scaffold

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Copper nitrite reductase (CuNiR) is a copper enzyme that converts nitrite to nitric oxide and is an important part of the global nitrogen cycle in bacteria. The relatively simple CuHis3 binding site of the CuNiR active site has made it an enticing target for small molecule modeling and de novo protein design studies. We have previously reported symmetric CuNiR models within parallel three stranded coiled coil systems, with activities that span a range of three orders of magnitude. In this report, we investigate the same CuHis3 binding site within an antiparallel three helical bundle scaffold, which allows the design of asymmetric constructs. We determine that a simple CuHis3 binding site can be designed within this scaffold with enhanced activity relative to the comparable construct in parallel coiled coils. Incorporating more complex designs or repositioning this binding site can decrease this activity as much as 15 times. Comparing these constructs, we reaffirm a previous result in which a blue shift in the 1s to 4p transition energy determined by Cu(I) X-ray absorption spectroscopy is correlated with an enhanced activity within imidazole-based constructs. With this step and recent successful electron transfer site designs within this scaffold, we are one step closer to a fully functional de novo designed nitrite reductase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM (2008) Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem 13(8):1205–1218

    Article  PubMed  CAS  Google Scholar 

  2. Andreini C, Bertini I, Rosato A (2009) Metalloproteomes: a Bioinformatic Approach. Acc Chem Res 42(10):1471–1479

    Article  PubMed  CAS  Google Scholar 

  3. Andreini C, Cavallaro G, Lorenzini S, Rosato A (2013) MetalPDB: a database of metal sites in biological macromolecular structures. Nucleic Acids Res 41(D1):D312–D319

    Article  PubMed  CAS  Google Scholar 

  4. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7(3):737–750

    Google Scholar 

  5. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320(5878):889–892

    Article  PubMed  CAS  Google Scholar 

  6. Galloway JN, Leach AM, Bleeker A, Erisman JW (2013) A chronology of human understanding of the nitrogen cycle<sup>†</sup>. Philos Trans R Soc B 368(1621):20130120

    Article  CAS  Google Scholar 

  7. Maia LB, Moura JJG (2014) How Biology Handles Nitrite. Chem Rev 114(10):5273–5357

    Article  PubMed  CAS  Google Scholar 

  8. Lehnert N, Dong HT, Harland JB, Hunt AP, White CJ (2018) Reversing nitrogen fixation. Nat Rev Chem 2(10):278–289

    Article  CAS  Google Scholar 

  9. Iwasaki H, Noji S, Shidara S (1975) Achromobacter cycloclastes nitrite reductase the function of copper, amino acid composition, and ESR spectra1. J Biochem 78(2):355–361

    Article  PubMed  CAS  Google Scholar 

  10. Kukimoto M, Nishiyama M, Murphy MEP, Turley S, Adman ET, Horinouchi S, Beppu T (1994) X-ray Structure and Site-Directed Mutagenesis of a Nitrite Reductase from Alcaligenes Faecalis S-6: roles of two copper atoms in nitrite reduction. Biochemistry 33(17):5246–5252

    Article  PubMed  CAS  Google Scholar 

  11. Libby E, Averill BA (1992) Evidence that the Type 2 copper centers are the site of nitrite reduction by Achromobacter cycloclastes nitrite reductase. Biochem Biophys Res Commun 187(3):1529–1535

    Article  PubMed  CAS  Google Scholar 

  12. Strange RW, Dodd FE, Abraham ZHL, Grossmann JG, Brüser T, Eady RR, Smith BE, Hasnain SS (1995) The substrate-binding site in Cu nitrite reductase and its similarity to Zn carbonic anhydrase. Nat Struct Biol 2:287

    Article  PubMed  CAS  Google Scholar 

  13. Tegoni M, Yu F, Bersellini M, Penner-Hahn JE, Pecoraro VL (2012) Designing a functional type 2 copper center that has nitrite reductase activity within α-helical coiled coils. PNAS 109(52):21234–21239

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zastrow ML, Peacock AFA, Stuckey JA, Pecoraro VL (2012) Hydrolytic catalysis and structural stabilization in a designed metalloprotein. Nat Chem 4(2):118–123

    Article  CAS  Google Scholar 

  15. Yu F, Penner-Hahn JE, Pecoraro VL, De, (2013) Novo-designed metallopeptides with type 2 copper centers: modulation of reduction potentials and nitrite reductase activities. J Am Chem Soc 135(48):18096–18107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Koebke KJ, Yu F, Salerno E, Stappen CV, Tebo AG, Penner-Hahn JE, Pecoraro VL (2018) Modifying the steric properties in the second coordination sphere of designed peptides leads to enhancement of nitrite reductase activity. Angew Chem Int Ed 57(15):3954–3957

    Article  CAS  Google Scholar 

  17. Koebke KJ, Yu F, Van Stappen C, Pinter TBJ, Deb A, Penner-Hahn JE, Pecoraro VL (2019) Methylated histidines alter tautomeric preferences that influence the rates of cu nitrite reductase catalysis in designed peptides. J Am Chem Soc 141(19):7765–7775

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Boulanger MJ, Kukimoto M, Nishiyama M, Horinouchi S, Murphy MEP (2000) Catalytic roles for two water bridged residues (Asp-98 and His-255) in the active site of copper-containing nitrite reductase. J Biol Chem 275(31):23957–23964

    Article  PubMed  CAS  Google Scholar 

  19. Shook RL, Borovik AS (2010) The role of the secondary coordination sphere in metal-mediated dioxygen activation. Inorg Chem 49(8):3646–3660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Cook SA, Borovik AS (2015) Molecular designs for controlling the local environments around metal ions. Acc Chem Res 48(8):2407–2414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Colquhoun HM, Stoddart JF, Williams DJ (1986) Second-sphere coordination—a novel rǒle for molecular receptors. Angew Chem Int Ed Engl 25(6):487–507

    Article  Google Scholar 

  22. Koebke KJ, Alfaro VS, Pinter TBJ, Deb A, Lehnert N, Tard C, Penner-Hahn JE, Pecoraro VL (2020) Traversing the red–green–blue color spectrum in rationally designed cupredoxins. J Am Chem Soc 142(36):15282–15294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Plegaria JS, Duca M, Tard C, Friedlander TJ, Deb A, Penner-Hahn JE, Pecoraro VL, De, (2015) Novo design and characterization of copper metallopeptides inspired by native cupredoxins. Inorg Chem 54(19):9470–9482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Rittle J, Field MJ, Green MT, Tezcan FA (2019) An efficient, step-economical strategy for the design of functional metalloproteins. Nat Chem 11(5):434–441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Chino M, Leone L, Maglio O, D’Alonzo D, Pirro F, Pavone V, Nastri F, Lombardi A (2017) A de novo heterodimeric due ferri protein minimizes the release of reactive intermediates in dioxygen-dependent oxidation. Angew Chem Int Ed 56(49):15580–15583

    Article  CAS  Google Scholar 

  26. Summa CM, Rosenblatt MM, Hong J-K, Lear JD, DeGrado WF (2002) Computational de novo design, and characterization of an A2B2 diiron protein. J Mol Biol 321(5):923–938

    Article  PubMed  CAS  Google Scholar 

  27. Marsh ENG, DeGrado WF (2002) Noncovalent self-assembly of a heterotetrameric diiron protein. PNAS 99(8):5150–5154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Cangelosi VM, Deb A, Penner-Hahn JE, Pecoraro VL (2014) A De Novo Designed Metalloenzyme for the Hydration of CO2. Angew Chem Int Ed 53(30):7900–7903

    Article  CAS  Google Scholar 

  29. Mathieu E, Tolbert AE, Koebke KJ, Tard C, Iranzo O, Penner-Hahn JE, Policar C, Pecoraro V (2020) Rational de novo design of a cu metalloenzyme for superoxide dismutation. Chemistry 26(1):249–258

    Article  PubMed  CAS  Google Scholar 

  30. Bryson JW, Desjarlais JR, Handel TM, Degrado WF (1998) From coiled coils to small globular proteins: design of a native-like three-helix bundle. Protein Sci 7(6):1404–1414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Walsh STR, Cheng H, Bryson JW, Roder H, DeGrado WF (1999) Solution structure and dynamics of a de novo designed three-helix bundle protein. PNAS 96(10):5486–5491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Koebke KJ, Ruckthong L, Meagher JL, Mathieu E, Harland J, Deb A, Lehnert N, Policar C, Tard C, Penner-Hahn JE, Stuckey JA, Pecoraro VL (2018) Clarifying the copper coordination environment in a de novo designed red copper protein. Inorg Chem 57(19):12291–12302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Plegaria JS, Pecoraro VL (2015) Sculpting metal-binding environments in de novo designed three-helix bundles. Isr J Chem 55(1):85–95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Karayannis MI, Samios DN, Gousetis CHP (1977) A study of the molar absorptivity of ascorbic acid at different wavelengths and pH values. Anal Chim Acta 93:275–279

    Article  PubMed  CAS  Google Scholar 

  35. George, G. N.; Pickering, I. J. EXAFSPAK. http://ssrl.slac.stanford.edu/~george/exafspak/exafs.htm.

  36. Ankudinov AL, Rehr JJ (1997) Relativistic calculations of spin-dependent x-ray-absorption spectra. Phys Rev B 56(4):R1712–R1716

    Article  CAS  Google Scholar 

  37. Weng T-C, Waldo GS, Penner-Hahn JE (2005) A method for normalization of X-ray absorption spectra. J Synchrotron Radiat 12(4):506–510

    Article  PubMed  CAS  Google Scholar 

  38. Dimakis N, Bunker G (2004) XAFS Debye-Waller factors for Zn metalloproteins. Phys. Rev. B 70(19):195114

    Article  CAS  Google Scholar 

  39. Pinter TBJ, Manickas EC, Tolbert AE, Koebke KJ, Deb A, Penner-Hahn JE, Pecoraro VL (2020) Making or breaking metal-dependent catalytic activity: the role of stammers in designed three-stranded coiled coils. Angew Chem Int Ed 59(46):20445–20449

    Article  CAS  Google Scholar 

  40. Kau LS, Spira-Solomon DJ, Penner-Hahn JE, Hodgson KO, Solomon EI (1987) X-ray absorption edge determination of the oxidation state and coordination number of copper. Application to the type 3 site in Rhus vernicifera laccase and its reaction with oxygen. J Am Chem Soc 109(21):6433–6442

    Article  CAS  Google Scholar 

  41. Chakraborty S, Kravitz JY, Thulstrup PW, Hemmingsen L, DeGrado WF, Pecoraro VL (2011) Realization of a designed three-helix bundle capable of binding heavy metals in a Tris(Cysteine) environment. Angew Chem Int Ed Engl 50(9):2049–2053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Lovejoy B, Choe S, Cascio D, McRorie D, DeGrado W, Eisenberg D (1993) Crystal structure of a synthetic triple-stranded alpha-helical bundle. Science 259(5099):1288–1293

    Article  PubMed  CAS  Google Scholar 

  43. Plegaria JS, Dzul SP, Zuiderweg ERP, Stemmler TL, Pecoraro VL (2015) Apoprotein structure and metal binding characterization of a de novo designed peptide, α3div, that sequesters toxic heavy metals. Biochemistry 54(18):2858–2873

    Article  PubMed  CAS  Google Scholar 

  44. Tebo AG, Pinter TBJ, García-Serres R, Speelman AL, Tard C, Sénéque O, Blondin G, Latour J-M, Penner-Hahn J, Lehnert N, Pecoraro VL (2018) Development of a rubredoxin-type center embedded in a de novo-designed three-helix bundle. Biochemistry 57(16):2308–2316

    Article  PubMed  CAS  Google Scholar 

  45. Polizzi NF, Wu Y, Lemmin T, Maxwell AM, Zhang S-Q, Rawson J, Beratan DN, Therien MJ, DeGrado WF, De, (2017) novo design of a hyperstable non-natural protein–ligand complex with sub-Å accuracy. Nat Chem 9(12):1157–1164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

V.L.P thanks the National Institutes of Health for financial support of this research (GM141086). Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research, and by the National Institutes of Health, National Institute of General Medical Sciences (including P41GM103393). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of NIGMS or NIH. A.G.T. acknowledges support from the Rackham Merit Fellowship (University of Michigan), as well as training grant support from the University of Michigan Chemistry–Biology Interface (CBI) training program (NIH grant 5T32GM008597) and support from the Chateaubriand Fellowship (Embassy of France in the United States).

Funding

V.L.P thanks the National Institutes of Health for financial support of this research (GM141086). Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research, and by the National Institutes of Health, National Institute of General Medical Sciences (including P41GM103393). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of NIGMS or NIH. A.G.T. acknowledges support from the Rackham Merit Fellowship (University of Michigan), as well as training grant support from the University of Michigan Chemistry-Biology Interface (CBI) training program (NIH grant 5T32GM008597) and support from the Chateaubriand Fellowship (Embassy of France in the United States).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent L. Pecoraro.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Availability of data and material

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not Applicable.

Supporting information

Supporting information includes a table of Cu(I) EXAFS fitting parameters and figures of the best Cu(I) EXAFS fit for each construct reported.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koebke, K.J., Tebo, A.G., Manickas, E.C. et al. Nitrite reductase activity within an antiparallel de novo scaffold. J Biol Inorg Chem 26, 855–862 (2021). https://doi.org/10.1007/s00775-021-01889-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-021-01889-1

Keywords

Navigation