Skip to main content
Log in

Efficient Quantum Private Comparison Based on Entanglement Swapping of Bell States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, by using entanglement swapping of Bell states, an efficient quantum private comparison(QPC) protocol with a semi-honest party is proposed. The semi-honest third party (TP) is required to help two participants perform the comparison. She can record intermediate results and do some calculations in the whole process of the protocol execution, but she is not allowed to conspire with any participants. Moreover, TP cannot get two participants’ privacy information except the comparison results. The security analysis shows that the proposed protocol can resist both outsider attacks and insider attacks. Compared with other similar QPC protocols, the proposed one needs neither unitary operations nor the entanglement swapping of multiparticle quantum states, and it only needs the entanglement swapping of Bell states, which makes it more practical. Since three-bit classical information could be compared in each comparison, the proposed protocol has a good performance in its efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers Systems and Signal Processing, Bangalore, India, pp. 175–179 (1984)

  2. Jiang, C., Yu, Z.W., Wang, X.B.: Measurement-device-independent quantum key distribution with source state errors in photon number space. Phys. Rev. A. 94(6), 062323 (2016)

    Article  ADS  Google Scholar 

  3. Bai, D., Huang, P., Zhu, Y., Ma, H., Xiao, T., Wang, T., Zeng, G.: Unidimensional continuous-variable measurement-device-independent quantum key distribution. Quantum Inf. Process. 19, 53 (2020)

    Article  ADS  Google Scholar 

  4. Huang, D.J., Zhong, W.Z., Zhong, J., et al.: Optimization and Implementation of Efficient and Universal Quantum Key Distribution. J. Electric. Comput. Eng. 2020, 1–9 (2020)

    Article  Google Scholar 

  5. Li, L., Li, Z.: A multi-party quantum key agreement protocol based on Shamir’s secret sharing. Int. J. Theor. Phys. 58, 3081–3090 (2019). https://doi.org/10.1007/s10773-019-04187-4

    Article  MathSciNet  MATH  Google Scholar 

  6. Huang, W.C., Yang, Y.K., Jiang, D., et al.: Designing Secure Quantum Key Agreement Protocols Against Dishonest Participants. Int. J. Theor. Phys. 58, 4093–4104 (2019). https://doi.org/10.1007/s10773-019-04275-5

    Article  MATH  Google Scholar 

  7. Huang, X., Zhang, S.B., Chang, Y., Qiu, C., Liu, D.M., Hou, M.: Quantum key agreement protocol based on quantum search algorithm. Int. J. Theor. Phys. 60, 838–847 (2021)

    Article  MathSciNet  Google Scholar 

  8. Mansour, M., Dahbi, Z.: Quantum secret sharing protocol using maximally entangled multi-qudit states. Int. J. Theor. Phys. 59(12), 3876–3887 (2020)

    Article  MathSciNet  Google Scholar 

  9. Yin-Ju, L.: Quantum secret sharing via cavity QED. Int. J. Theor. Phys. 59, 3324–3328 (2020). https://doi.org/10.1007/s10773-020-04591-1

    Article  ADS  MATH  Google Scholar 

  10. Bebrov, G., Dimova, R.: Efficient quantum secure direct communication protocol based on Quantum Channel compression. Int. J. Theor. Phys. 59, 426–435 (2020). https://doi.org/10.1007/s10773-019-04336-9

    Article  MathSciNet  MATH  Google Scholar 

  11. Yin-Ju, L.: A novel practical quantum secure direct communication protocol. Int. J. Theor. Phys. 60, 1159–1163 (2021). https://doi.org/10.1007/s10773-021-04741-z

    Article  MathSciNet  Google Scholar 

  12. Gao, F. , Qin, S. J. , Huang, W., et al. Quantum private query: A new kind of practical quantum cryptographic protocol. Science China Physics, Mechanics & Astronomy (2019)

  13. Chang, Y.: Zhang, SB., wan, gg. Et al. practical two-way QKD-based quantum private query with better performance in user privacy. Int. J. Theor. Phys. 58, 2069–2080 (2019). https://doi.org/10.1007/s10773-019-04062-2

    Article  MATH  Google Scholar 

  14. Gao, X., Chang, Y., Zhang, S.B., Yang, F., Zhang, Y.: Quantum private query based on bell state and single photons. Int. J. Theor. Phys. 57, 1983–1989 (2018). https://doi.org/10.1007/s10773-018-3723-5

    Article  MathSciNet  MATH  Google Scholar 

  15. Yu, K.F., Yang, C.W., Liao, C.H., Hwang, T.: Authenticated semi-quantum key distribution protocol using bell states[J]. Quantum Inf. Process. 13(6), 1457–1465 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  16. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semi-quantum key distribution[J]. Phys. Rev. A. 79(3), 032341 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  17. Gao, X., Zhang, S., Chang, Y.: Cryptanalysis and improvement of the semi-quantum secret sharing protocol[J]. Int. J. Theor. Phys. 56(8), 2512–2520 (2017)

    Article  Google Scholar 

  18. Zheng, T., Chang, Y., Yan, L., Zhang, S.B.: Semi-quantum proxy signature scheme with quantum walk-based teleportation. Int. J. Theor. Phys. 59, 3145–3155 (2020)

    Article  MathSciNet  Google Scholar 

  19. Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16(12), 295 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  20. Huang, Z., Zhang, J., Wu, M., Li, X., Dong, Y.: Evolutionary method of sink node path planning guided by the Hamiltonian of quantum annealing algorithm. IEEE Access. 9, 53466–53479 (2021). https://doi.org/10.1109/ACCESS.2021.3070650

    Article  Google Scholar 

  21. Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd IEEE Symposium on Foundations of Computer Science (FOCS’ 82), Washington, DC, USA, 1982, pp.160

  22. Boudot, F., Schoenmakers, B., Traore, J.: A fair and efficient solution to the socialist millionaires’ problem. Discret. Appl. Math. 111, 23–36 (2001)

    Article  MathSciNet  Google Scholar 

  23. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A. 56(2), 1154–1162 (1997)

    Article  ADS  Google Scholar 

  24. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42, 055305 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  25. Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single particle measurement. Opt.Commun. 283(7), 1561–1565 (2010)

    Article  ADS  Google Scholar 

  26. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels. Sci. China Phys. Mech. Astron. 56(9), 1670–1678 (2013)

    Article  ADS  Google Scholar 

  27. Li, J., Jia, L., Zhou, H.F., et al.: Secure quantum private comparison protocol based on the entanglement swapping between three-particle W-class state and bell state. Int. J. Theor. Phys. 55(3), 1710–1718 (2016)

    Article  Google Scholar 

  28. Li, C.Y., Chen, X.B., Li, H.J., Yang, Y.G., Li, J.: Efficient quantum private comparison protocol based on the entanglement swapping between four-qubit cluster state and extended bell state. Quantum Inf. Process. 18, 158 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  29. Ji, Z.X., Ye, T.Y.: Quantum private comparison of equal information based on highly entangled six-qubit genuine state. Commun. Theor. Phys. 65(6), 711–715 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  30. Ji, Z.X., Zhang, H.G., Fan, P.R.: Two-party quantum private comparison protocol with maximally entangled seven-qubit state. Modern Phys. Lett. A. 34(28), 1950229 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  31. Ji, Z., Zhang, H., Wang, H.. Quantum private comparison protocols with a number of multi-particle entangled states. IEEE Access, 44613-44621, 2019

  32. Chang, Y., Zhang, W.B., Zhang, S.B., Wang, H.C., Yan, L.L., Han, G.H., Sheng, Z.W., Huang, Y.Y., Suo, W., Xiong, J.X.: Quantum private comparison of equality based on five-particle cluster state. Commun. Theor. Phys. 66, 621–628 (2016)

    Article  ADS  Google Scholar 

  33. Zha, X.W., Yu, X.Y., Cao, Y., Wang, S.K.: Quantum private comparison protocol with five-particle cluster states. Int. J. Theor. Phys. 57, 3874–3881 (2018)

    Article  Google Scholar 

  34. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A. 72(4), 440–450 (2005). https://doi.org/10.1103/PhysRevA.72.044302

    Article  Google Scholar 

  35. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A. 351(1–2), 23–25 (2006)

    Article  ADS  Google Scholar 

  36. Gao, F., Qin, S.J., Wen, Q.Y., et al.: A simple participant attack on the brádler-dušek protocol. Quantum Inform. Comput. 7(4), 329–334 (2007)

    Article  Google Scholar 

  37. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No.62076042, No.61572086), the Key Research and Development Project of Sichuan Province (No. 2020YFG0307, No. 2018TJPT0012), the Miaozi Project of Sichuan Province (No. 2020017), the Key Research and Development Project of Chengdu (No. 2019-YF05-02028-GX), the Innovation Team of Quantum Security Communication of Sichuan Province (No.17TD0009), the Academic and Technical Leaders Training Funding Support Projects of Sichuan Province (No. 2016120080102643).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Bin Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Zhang, SB., Chang, Y. et al. Efficient Quantum Private Comparison Based on Entanglement Swapping of Bell States. Int J Theor Phys 60, 3783–3796 (2021). https://doi.org/10.1007/s10773-021-04915-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04915-9

Keywords

Navigation