Skip to main content
Log in

Alternative Air Induction Melt–Remelt Processing of an Fe3Al–C Intermetallic Alloy: Part I—Mechanical Properties and the Effects of Loading Rate, Heat Treatment and Test Temperatures

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Iron aluminides based on Fe3Al intermetallic structure are known by their good corrosion and oxidation resistance. However, the hydrogen embrittlement is an issue generated by passive Al2O3 formation due to Al reaction with atmospheric water vapor. Thus, the main aim of this study was to evaluate the effects of loading rate, heat treatment and temperature of test on the mechanical properties of a Fe–Al–C alloy. Mechanical properties analysis and the incidence of hydrogen embrittlement were performed in a Fe3Al–C alloy (Fe–15.2Al–1.1C wt%), which was melted and remelted in an induction furnace. Tensile and Charpy impact tests were carried out at room temperature (as-cast and heat-treated conditions) and temperatures up to 600 °C, in order to evaluate the influence of different temperatures, heat treatment, and load rates (tensile and impact) on hydrogen embrittlement. Furthermore, the fractography was performed by SEM, helping to understand the fracture mechanisms. The heat treatment generated specimens with higher tensile resistance, however, with no effect on impact resistance, demonstrating that hydrogen embrittlement generates more damage in lower load rate tests. The tests at higher temperatures demonstrated improvement in the impact and tensile properties and regarding all conditions the fracture after tensile tests presented more brittle aspects than after impact tests.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Availability of Data and Material

The authors declare that the data used are available.

References

  1. U. Prakash U, Intermetallic matrix composites based on iron aluminides (2018), pp. 21–35. https://doi.org/10.1016/B978-0-85709-346-2.00002-9.

  2. C.G. McKamey, C.T. Liu, J.V. Cathcart, S. David, E.H. Lee, Evaluation of mechanical and metallurgical properties of Fe3Al-based aluminides. Oak Ridge Natl. Lab. (1986)

  3. E. Godlewska, S. Szczepanik, R. Mania, J. Krawiarz, S. Koziñski, FeAl materials from intermetallic powders. Intermetallics 11, 307–312 (2003)

    Article  CAS  Google Scholar 

  4. M. Martinez, B. Viguier, P. Maugis, J. Lacaze, Relation between composition, microstructure and oxidation in iron aluminides. Intermetallics 14, 1214–1220 (2006)

    Article  CAS  Google Scholar 

  5. M.R. Hajaligol, C. Scorey, V.K. Sikka, S.C. Deevi, G. Fleishhauer, A.C. Lilly Jr, R.M. German, Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders (2000)

  6. R. Balasubramaniam, Hydrogen in iron aluminides. J. Alloys Compd. 330, 506–510 (2002)

    Article  Google Scholar 

  7. C.L. Fu, G.S. Painter, First principles investigation of hydrogen embrittlement in FeAl. J. Mater. Res. 6, 719–723 (1991)

    Article  CAS  Google Scholar 

  8. C.T. Liu, V.K. Sikka, C.G. McKamey, Alloy development of FeAl aluminide alloys for structural use in corrosive environments. Oak Ridge Natl. Lab., TN (United States) (1993). https://doi.org/10.2172/6136151.

  9. C.G. McKamey, C.T. Liu, Environmental embrittlement of iron aluminides in moisture-containing atmospheres. U.S. Dep. Energy Off. Sci. Tech. Inf. (1991)

  10. N.S. Stoloff, C.T. Liu, Environmental embrittlement of iron aluminides. Intermetallics 2, 75–87 (1994)

    Article  CAS  Google Scholar 

  11. P. Dymáček, F. Dobeš, Y. Jirásková, N. Pizúrová, M. Friák, Tensile, creep and fracture testing of prospective Fe–Al-based alloys using miniature specimens. Theor. Appl. Fract. Mech. (2018). https://doi.org/10.1016/j.tafmec.2018.11.005

    Article  Google Scholar 

  12. M. Chen, D. Lin, Y. Xia, C.T. Liu, Strain rate sensitivity of ductility and fracture behaviors in a Fe–28Al alloy. Mater. Sci. Eng. A. 239–240, 317–323 (1997)

    Article  Google Scholar 

  13. D.B. Kasul, L.A. Heldt, Effect of environment on the mechanical properties of an Fe-246Al alloy. Scr. Metall. Mater. 25, 1047–1051 (1991)

    Article  CAS  Google Scholar 

  14. G. Rosas, R. Esparza, A. Bedolla-Jacuinde, R. Pérez, Room temperature mechanical properties of Fe3Al intermetallic alloys with Li and Ni additions. J. Mater. Eng. Perform. 18, 57–61 (2009)

    Article  CAS  Google Scholar 

  15. R.M. Aikin, The mechanical properties of in-situ composites. JOM. 49, 35 (1997)

    Article  CAS  Google Scholar 

  16. R. Kant, U. Prakash, V. Agarwala, V.S. Prasad, Microstructure and wear behaviour of FeAl-based composites containing in-situ carbides. Bull. Mater. Sci. 39, 1827–1834 (2016)

    Article  CAS  Google Scholar 

  17. U. Prakash, Development of iron aluminides containing carbon. Trans. Indian Inst. Met. 61, 193–199 (2008)

    Article  CAS  Google Scholar 

  18. R.S. Sundar, S.C. Deevi, Effect of carbon addition on the strength and creep resistance of FeAl alloys. Metall. Mater. Trans. A. 34, 2233–2246 (2003)

    Article  Google Scholar 

  19. L.N. Bartlett, R. Rahman, A. Torres, Minimizing phosphorus pickup during melting and casting of lightweight Fe–Mn–Al–C steels. Int. J. Met. 12, 164–181 (2018). https://doi.org/10.1007/s40962-017-0152-9

    Article  Google Scholar 

  20. R. Vaz Penna, L.N. Bartlett, T. Constance, Understanding the role of inclusions on the dynamic fracture toughness of high strength lightweight FeMnAl steels. Int. J. Met. 13, 286–299 (2019). https://doi.org/10.1007/s40962-018-0273-9

    Article  CAS  Google Scholar 

  21. L.N. Bartlett, S. Serino, Nitriding of lightweight high manganese and aluminum steels. Int. J. Met. 10, 190–200 (2016). https://doi.org/10.1007/s40962-016-0022-x

    Article  Google Scholar 

  22. R. Vaz Penna, L.N. Bartlett, R. O’Malley, Influence of TiN additions on the microstructure of a lightweight Fe–Mn–Al steel. Int. J. Met. 14, 342–355 (2020). https://doi.org/10.1007/s40962-019-00373-6

    Article  CAS  Google Scholar 

  23. N.B. Ballal, Effect of carbides on embrittlement of Fe3Al based intermetallic alloys. Scr. Mater. 36, 667–671 (1997)

    Article  Google Scholar 

  24. A. Schneider, L. Falat, G. Sauthoff, G. Frommeyer, Microstructures and mechanical properties of Fe3Al-based Fe–Al–C alloys. Intermetallics 13, 1322–1331 (2005)

    Article  CAS  Google Scholar 

  25. M. Sen, R. Balasubramaniam, Hydrogen trapping at carbide-matrix interfaces in Fe3Al–C intermetallics. Scr. Mater. 44, 619–623 (2001)

    Article  CAS  Google Scholar 

  26. N. Parvathavarthini, U. Prakash, R.K. Dayal, Effect of carbon addition on hydrogen permeation in an Fe3Al-based intermetallic alloy. Intermetallics 10, 329–332 (2002)

    Article  CAS  Google Scholar 

  27. V.S. Rao, Fe3Al-Fe3AlC intermetallics for high temperature applications: An assessment. J. Mater. Sci. 39, 4193–4198 (2004)

    Article  CAS  Google Scholar 

  28. M.N. Verona, D. Setti, R.S.C. Paredes, Microstructure and properties of Fe3Al-fe3ALCx composite prepared by reactive liquid processing. Metall. Mater. Trans. B Process. Metall. Mater. Process. Sci. 49, 529–536 (2018)

    Article  CAS  Google Scholar 

  29. R.G. Baligidad, U. Prakash, A. Radhakrishna, Processing of high carbon Fe3Al based intermetallic alloy. Intermetallics 6, 765–769 (1998)

    Article  CAS  Google Scholar 

  30. V.K. Sikka. Processing and apllications of iron aluminides, in 1994 TMS Annual Meeting Proceedings Publication (1994), pp. 1–16

  31. R.G. Baligidad, U. Prakash, A. Radhakrishna, High temperature tensile and creep properties of a cast aim and ESR intermetallic alloy based on Fe3Al. Mater. Sci. Eng. A. 231, 206–210 (1997)

    Article  Google Scholar 

  32. R.G. Baligidad, U. Prakash, A. Radhakrishna, V. Ramakrishna Rao, P.K. Rao, N.B. Ballal, Effect of carbon content on high temperature tensile properties of Fe3Al based intermetallic alloys. Scr. Mater. 36, 105–109 (1997)

    Article  CAS  Google Scholar 

  33. A.M.S. Malafaia, M.T. Milan, M. Omar, R.M. Muñoz Riofano, M.F. De Oliveira, Oxidation and abrasive wear of Fe–Si and Fe–Al intermetallic alloys. J. Mater. Sci. 45, 5393–5397 (2010)

    Article  CAS  Google Scholar 

  34. K. Balasubramanian, L.N. Bartlett, R. O’Malley, S. Chakraborty, M. Xu, Filtration efficiency of inclusions in lightweight FeMnAl steels. Int. J. Met. 14, 328–341 (2020). https://doi.org/10.1007/s40962-019-00372-7

    Article  CAS  Google Scholar 

  35. C.G. McKamey, J.H. DeVan, P.F. Tortorelli, V.K. Sikka, A review of recent developments in Fe3Al-based alloys. J. Mater. Res. 6, 1779–1805 (1991)

    Article  CAS  Google Scholar 

  36. R.G. Baligidad, K.S. Prasad, Effect of Al and C on structure and mechanical properties of Fe–Al–C alloys. Mater. Sci. Technol. 23, 38–44 (2007)

    Article  CAS  Google Scholar 

  37. R.G. Baligidad, U. Prakash, V. Ramakrishna Rao, P.K. Rao, N.B. Ballal, Effect of carbon content on mechanical properties of electroslag remelted Fe3Al based intermetallic alloys. ISIJ Int. 36, 1453–1458 (1996)

    Article  CAS  Google Scholar 

  38. S.M. Zhu, X.S. Guan, K. Shibata, K. Iwasaki, Microstructure and mechanical and tribological properties of high carbon Fe3Al and FeAl intermetallic alloys. Mater. Trans. 43, 36–41 (2002)

    Article  CAS  Google Scholar 

  39. J. Yang, P. La, W. Liu, Y. Hao, Microstructure and properties of Fe3Al–Fe3 AlC05 composites prepared by self-propagating high temperature synthesis casting. Mater. Sci. Eng. A 382, 8–14 (2004)

    Article  Google Scholar 

  40. R.V. Shankar, Some observations on the hydrogen embrittlement of Fe3Al–Fe 3AlC intermetallic compounds. Mater. Res. Bull. 39, 169–174 (2004)

    Article  Google Scholar 

  41. Z. Wang, Y. Zhou, Y. Xia, Effect of strain rate on behaviour of Fe3Al under tensile impact. J. Mater. Sci. 32, 2387–2390 (1997)

    Article  CAS  Google Scholar 

  42. Z.R. Zhang, W.X. Liu, Mechanical properties of Fe3Al-based alloys with addition of carbon, niobium and titanium. Mater. Sci. Eng. A. 423, 343–349 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the MIB – Materials Institute of Brazil by the partnership during the D.Sc. thesis development as also the support of the National Council of Technological and Scientific Development—CNPq—Brazil through a PhD scholarship (2009–2013), Process Number: 140634/2009-6. The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

Funding

This study received financial support from National Council of Technological and Scientific Development—CNPq—Brazil through a PhD scholarship (2009–2013), process number: 140634/2009-6

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Mariano de Sousa Malafaia.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Sousa Malafaia, A.M., Maestro, C.A.R. & de Oliveira, M.F. Alternative Air Induction Melt–Remelt Processing of an Fe3Al–C Intermetallic Alloy: Part I—Mechanical Properties and the Effects of Loading Rate, Heat Treatment and Test Temperatures. Inter Metalcast 16, 1265–1275 (2022). https://doi.org/10.1007/s40962-021-00679-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00679-4

Keywords

Navigation