Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microbispora oryzae sp. nov., isolated from leaves of rice plant (Oryza sativa L.)

Abstract

An endophytic actinomycete, designated strain RL4-1ST, was isolated from surface-sterilized leaves of rice plant (Oryza sativa L.) collected from Buri Rum province, Thailand. Its taxonomic status was determined using a polyphasic approach. Phylogenetic analysis based on the 16S rRNA gene sequences showed that the strain RL4-1ST belongs to the genus Microbispora and is most closely related to Microbispora rosea subsp. rosea ATCC 12950T (98.5%). The strain forms pairs of spores on short sporophores borne on the aerial mycelium. Polar lipid profile of strain RL4-1ST is diphosphatidylglycerol, hydroxy-phosphatidylethanolamine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannosides, ninhydrin-positive glycophospholipid, two unidentified phospholipids, an unidentified aminolipid, and an unidentified glycolipid. MK-9(H4), MK-9(H2), and MK-9 are major menaquinones of this organism. The predominant cellular fatty acids are iso-C16:0, C17:0 and C16:0. Strain RL4-1ST contains meso-diaminopimelic acid, glucose, madurose and ribose in whole-cell hydrolysates. The draft genome of strain RL4-1ST consists of 7.46 Mbp and has a G + C content 71.2 mol%. Digital DNA–DNA hybridization and average nucleotide identity values between the genome sequence of strain RL4-1ST with Microbispora rosea subsp. rosea ATCC 12950T are 26.0% and 80.7%, respectively. Based on data of genotypic, phenotypic, phylogenetic and chemotaxonomic analysis, strain RL4-1ST represents a novel species of the genus Microbispora, for which the name Microbispora oryzae sp. nov. is proposed. The type strain is RL4-1ST (= TBRC 14817T = NBRC 115115T).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nonomura H, Ohara Y. Distribution of actinomycetes in the soil. II. Microbispora, a new genus of the Streptomycetaceae. J Ferment Technol. 1957;35:307–11.

    Google Scholar 

  2. Goodfellow M, Stanton LJ, Simpson KE, Minnikin DE. Numerical and chemical classification of Actinoplanes and some related actinomycetes. J Gen Microbiol. 1990;136:19–36.

    Article  Google Scholar 

  3. Franco CMM Genus IV. Microbispora Nonomura and Ohara 1957, 307AL emend. Zhang, Wang and Ruan 1998a, 418. In: Whitman WB, Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME et al., editors. Bergey’s Manual of Systematic Bacteriology. 4, 2nd ed. New York: Springer; 2012. p. 1750.

  4. Parte AC. LPSN-list of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol. 2018;68:1825–9.

    Article  PubMed  Google Scholar 

  5. Li C, Zhang Y, Liu C, Wang H, Zhao J, Li L, et al. Microbispora bryophytorum sp. nov., an actinomycete isolated from moss (Bryophyta). Int J Syst Evol Microbiol. 2015;65:1274–9.

    Article  CAS  PubMed  Google Scholar 

  6. Klykleung N, Yuki M, Kudo T, Ohkuma M, Phongsopitanun W, Pittayakhajonwut P, et al. Microbispora catharanthi sp. nov., a novel endophytic actinomycete isolated from the root of Catharanthus roseus. Int J Syst Evol Microbiol. 2020;70:964–70.

    Article  CAS  PubMed  Google Scholar 

  7. Kaewkla O, Koomsiri W, Thamchaipenet A, Franco CMM. Microbispora clausenae sp. nov., an endophytic actinobacterium isolated from the surface-sterilized stem of a Thai medicinal plant, Clausena excavala Burm. f. Int J Syst Evol Microbiol. 2020;70:6213–9.

    Article  CAS  PubMed  Google Scholar 

  8. Zhao J, Yu B, Han C, Cao P, Yu Z, Ju H, et al. Microbispora fusca sp. nov., a novel actinomycete isolated from the ear of wheat (Triticum aestivum L.). Int J Syst Evol Microbiol. 2020;70:139–45.

    Article  CAS  PubMed  Google Scholar 

  9. Han C, Tian Y, Zhao J, Yu Z, Jiang S, Guo X, et al. Microbispora triticiradicis sp. nov., a novel actinomycete isolated from the root of wheat (Triticum aestivum L.). Int J Syst Evol Microbiol. 2018;68:3600–5.

    Article  CAS  PubMed  Google Scholar 

  10. Thawai C, Bunbamrung N, Pittayakhajonwut P, Chongruchiroj S, Pratuangdejkul J, He YW, et al. A novel diterpene agent isolated from Microbispora hainanensis strain CSR-4 and its in vitro and in silico inhibition effects on acetylcholine esterase enzyme. Sci Rep. 2020;10:1–8.

    Article  CAS  Google Scholar 

  11. Ivanova V, Kolarova M, Aleksieva K, Gräfe U, Dahse HM, Laatsch H. Microbiaeratin, a new natural indole alkaloid from a Microbispora aerata strain, isolated from Livingston Island, Antarctica. Prep Biochem Biotechnol. 2007;37:161–8.

    Article  CAS  PubMed  Google Scholar 

  12. Okujo N, Iinuma H, George A, Eim KS, Li TL, Ting NS, et al. Bispolides, novel 20-membered ring macrodiolide antibiotics from Microbispora. J Antibiot. 2007;60:216–19.

    Article  CAS  Google Scholar 

  13. Indananda C, Igarashi Y, Ikeda M, Oikawa T, Thamchaipenet A. Linfuranone A, a new polyketide from plant-derived Microbispora sp. GMKU 363. J Antibiot. 2013;66:675–7.

    Article  CAS  Google Scholar 

  14. Muangham S, Lipun K, Matsumoto A, Inahashi Y, Duangmal K. Quadrisphaera oryzae sp. nov., an endophytic actinomycete isolated from leaves of rice plant (Oryza sativa L.). J Antibiot. 2019;72:93–8.

    Article  CAS  Google Scholar 

  15. Küster E, Williams ST. Selection of media for isolation of streptomycetes. Nature. 1964;202:928–9.

    Article  Google Scholar 

  16. Shirling ET, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Evol Microbiol. 1966;16:313–40.

    Google Scholar 

  17. Gordon RE, Barnett DA, Handerhan J, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol. 1974;24:54–63.

    Article  Google Scholar 

  18. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol. 1949;57:141–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Waksman SA. The Actinomycetes, a summary of current knowledge. New York:Ronald;1967.

  20. Kelly KL. Inter-Society Color Council – National Bureau of Standards Color Name Charts Illustrated with Centroid Colors. Washington DC: US Government Printing Office; 1964.

    Google Scholar 

  21. Himaman W, Thamchaipenet A, Pathom-aree W, Duangmal K. Actinomycetes from Eucalyptus and their biological activities for controlling Eucalyptus leaf and shoot blight. Microbiol Res. 2016;188:42–52.

    Article  PubMed  Google Scholar 

  22. Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH, Sackin MJ. Numerical classification of Streptomyces and related genera. J Gen Microbiol. 1983;129:1743–813.

    CAS  PubMed  Google Scholar 

  23. Becker B, Lechevalier MP, Lechevalier HA. Chemical composition of cell-wall preparations from strains of various form-genera of aerobic actinomycetes. Appl Microbiol. 1965;13:236–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol. 1983;29:319–22.

    Article  CAS  Google Scholar 

  25. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol. 1974;28:226–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of nocardia and related bacteria. Int J Syst Evol Microbiol. 1977;27:104–17.

    CAS  Google Scholar 

  27. Tomiyasu I. Mycolic acid composition and thermally adaptative changes in Nocardia asteroides. J Bacteriol. 1982;151:828–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Uchida K, Kudo T, Suzuki K-I, Nakase T. A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. J Gen Appl Microbiol. 1999;45:49–56.

    Article  CAS  PubMed  Google Scholar 

  29. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. Practical Streptomyces Genetics. Norwich: John Innes Foundation; 2000.

    Google Scholar 

  30. Mingma R, Pathom-aree W, Trakulnaleamsai S, Thamchaipenet A, Duangmal K. Isolation of rhizospheric and roots endophytic actinomycetes from Leguminosae plant and their activities to inhibit soybean pathogen, Xanthomonas campestris pv. glycine. World J Microbiol Biotechnol. 2014;30:271–80.

    Article  CAS  PubMed  Google Scholar 

  31. Chun J. Computer Assisted Classification and Identification of Actinomycetes. Doctoral dissertation, Newcastle upon Tyne:Newcastle University;1995.

  32. Yoon S-H, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.

    CAS  PubMed  Google Scholar 

  34. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool. 1971;20:406–16.

    Article  Google Scholar 

  35. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17:368–76.

    Article  CAS  PubMed  Google Scholar 

  36. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–91.

    Article  PubMed  Google Scholar 

  37. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2017;33:1870–4.

    Article  CAS  Google Scholar 

  38. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44:6614–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics. 2016;32:929–31.

    Article  CAS  PubMed  Google Scholar 

  42. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013;14:1–14.

    Article  Google Scholar 

  43. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun. 2019;10:2182.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. AntiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47:W81–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol. 2018;68:461–6.

    Article  CAS  PubMed  Google Scholar 

  46. Miyadoh S, Amano S, Tohyama H, Shomura T. A taxonomic review of the genus Microbispora and a proposal to transfer two species to the genus Actinomadura and to combine ten species into Microbispora rosea. J Gen Microbiol. 1990;136:1905–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Kasetsart University Research and Development Institute (KURDI) under the project FF(KU)18.64 “Data mining and microbial resource for agriculture and food industry”. We are grateful to Kenika Lipun for isolation of the strain.

Author information

Authors and Affiliations

Authors

Contributions

Supattra Muangham: Investigation, performed the experiments, wrote original draft. Kannika Duangmal: Conceptualization, validation, writing - review and editing, supervision, project administration. All the authors approved the final version of the manuscript.

Corresponding author

Correspondence to Kannika Duangmal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muangham, S., Duangmal, K. Microbispora oryzae sp. nov., isolated from leaves of rice plant (Oryza sativa L.). J Antibiot 74, 856–862 (2021). https://doi.org/10.1038/s41429-021-00470-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-021-00470-x

Search

Quick links