Skip to main content
Log in

Strong light–matter interaction in organic microcavity polaritons: essential criteria, design principles and typical configurations

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Resonant light–matter interaction between a molecular transition and a confined electromagnetic field can result in strong coupling where a coherent exchange of energy between light and matter occurs to form a new set of particles called polaritons. Being hybrid particles, polaritons exhibit a wide variety of quantum phenomena such as Bose–Einstein condensation, superfluidity, quantum phase transitions and many others. Recent progress in fundamental understanding and technological advancement in the field of polariton physics has allowed scientists to design and develop many impressive experimental configurations to obtain new insights into the strong interaction of light and matter in different material systems. Among all polariton configurations, microcavity polaritons based on organic materials have been emerging as a promising platform to easily achieve strong light–matter coupling at ambient conditions due to their unique properties compared to the conventional inorganic polariton systems. This mini review covers design principles and typical configurations of organic microcavity polaritons with a short tutorial on essential conditions to be satisfied for the strong coupling regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Isidor Isaac Rabi, Space quantization in a gyrating magnetic field. Phys. Rev. 51(8), 652 (1937)

    Article  MATH  Google Scholar 

  2. J.J. Sanchez-Mondragon, N.B. Narozhny, J.H. Eberly, Theory of spontaneous-emission line shape in an ideal cavity. Phys. Rev. Lett. 51(7), 550 (1983)

    Article  ADS  Google Scholar 

  3. Daniele Sanvitto, Stéphane. Kéna-Cohen, The road towards polaritonic devices. Nat. Mater. 15(10), 1061–1073 (2016)

    Article  ADS  Google Scholar 

  4. Nicholas Rivera, Ido Kaminer, Light-matter interactions with photonic quasiparticles. Nat. Rev. Phys. 2(10), 538–561 (2020)

    Article  Google Scholar 

  5. C.W. Lai, N.Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M.D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, Coherent zero-state and \(\pi \)-state in an exciton-polariton condensate array. Nature 450(7169), 529–532 (2007)

    Article  ADS  Google Scholar 

  6. J.J. Hopfield, Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev. 112(5), 1555 (1958)

    Article  ADS  MATH  Google Scholar 

  7. Gerhard Rempe, Herbert Walther, Norbert Klein, Observation of quantum collapse and revival in a one-atom maser. Phys. Rev. Lett. 58(4), 353 (1987)

    Article  ADS  Google Scholar 

  8. Claude Weisbuch, Mr. Nishioka, A. Ishikawa, Y. Arakawa, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69(23), 3314 (1992)

    Article  ADS  Google Scholar 

  9. G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity. Appl. Phys. Lett. 93(5), 051102-1–051102-3 (2008)

  10. D.G. Lidzey, D.D.C. Bradley, T. Virgili, A. Armitage, M.S. Skolnick, S. Walker, Room temperature polariton emission from strongly coupled organic semiconductor microcavities. Phys. Rev. Lett. 82(16), 3316 (1999)

    Article  ADS  Google Scholar 

  11. P. Schouwink, H.V. Berlepsch, L. Dähne, R.F. Mahrt, Dependence of Rabi-splitting on the spatial position of the optically active layer in organic microcavities in the strong coupling regime. Chem. Phys. 285(1), 113–120 (2002)

    Article  Google Scholar 

  12. J.R. Tischler, M.S. Bradley, V. Bulović, J.H. Song, A. Nurmikko, Strong coupling in a microcavity LED. Phys. Rev. Lett. 95(3), 036401 (2005)

    Article  ADS  Google Scholar 

  13. J. Kasprzak, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymańska, R. André, J.L. Staehli, Bose–Einstein condensation of exciton polaritons. Nature 443(7110), 409–414 (2006)

    Article  ADS  Google Scholar 

  14. S. Kéna-Cohen, S.R. Forrest, Room-temperature polariton lasing in an organic single-crystal microcavity. Nat. Photonics 4(6), 371 (2010)

    Article  ADS  Google Scholar 

  15. S. Kéna-Cohen, S.A. Maier, D.D.C. Bradley, Ultrastrongly coupled exciton-polaritons in metal-clad organic semiconductor microcavities. Adv. Opt. Mater. 1(11), 827–833 (2013)

    Article  Google Scholar 

  16. A.F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, F. Nori, Ultrastrong coupling between light and matter. Nat. Rev. 1(1), 19–40 (2019)

    Google Scholar 

  17. A. Fieramosca, L. Polimeno, V. Ardizzone, L. De Marco, M. Pugliese, V. Maiorano, M. De Giorgi, L. Dominici, G. Gigli, D. Gerace, Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Sci. Adv. 5(5), eaav9967 (2019)

    Article  ADS  Google Scholar 

  18. T. Chervy, X. Jialiang, Y. Duan, C. Wang, L. Mager, M. Frerejean, High-efficiency second-harmonic generation from hybrid light-matter states. Nano Lett. 16(12), 7352–7356 (2016)

    Article  ADS  Google Scholar 

  19. A. Amo, J. Lefrère, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdré, E. Giacobino, A. Bramati, Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5(11), 805–810 (2009)

    Article  MATH  Google Scholar 

  20. G. Lerario, A. Fieramosca, F. Barachati, D. Ballarini, K.S. Daskalakis, M. De Giorgi, S.A. Maier, G. Gigli, S. Kéna-Cohen, Room-temperature superfluidity in a polariton condensate. Nat. Phys. 13(9), 837–841 (2017)

    Article  Google Scholar 

  21. J. Gao, S. Combrie, B. Liang, P. Schmitteckert, G. Lehoucq, S. Xavier, X. XinAn, K. Busch, D.L. Huffaker, A. De Rossi, Strongly coupled slow-light polaritons in one-dimensional disordered localized states. Sci. Rep. 3(1), 1–6 (2013)

    Article  Google Scholar 

  22. P.A. Ivanov, S.S. Ivanov, N.V. Vitanov, A. Mering, M. Fleischhauer, K. Singer, Simulation of a quantum phase transition of polaritons with trapped ions. Phys. Rev. A 80(6), 060301 (2009)

    Article  ADS  Google Scholar 

  23. A. Graf, M. Held, Y. Zakharko, L. Tropf, M.C. Gather, J. Zaumseil, Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities. Nat. Mater. 16(9), 911–917 (2017)

    Article  ADS  Google Scholar 

  24. X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y.-H. Lee, S. Kéna-Cohen, V.M. Menon, Strong light-matter coupling in two-dimensional atomic crystals. Nat. Photonics 9(1), 30–34 (2015)

    Article  ADS  Google Scholar 

  25. S. Kéna-Cohen, M. Davanço, S.R. Forrest, Strong exciton-photon coupling in an organic single crystal microcavity. Phys. Rev. Lett. 101(11), 061101-1–061101-5 (2008)

  26. G. Lanty, S. Zhang, J.S. Lauret, E. Deleporte, P. Audebert, S. Bouchoule, X. Lafosse, J. Zuñiga-Pérez, F. Semond, D. Lagarde, Hybrid cavity polaritons in a ZnO-perovskite microcavity. Phys. Rev. B 84(19), 195449-1–195449-5 (2011)

  27. D. Kottilil, M. Gupta, K. Tomar, F. Zhou, C. Vijayan, P.K. Bharadwaj, W. Ji, Cost-effective realization of multimode exciton-polaritons in single-crystalline microplates of a layered metal-organic framework. ACS Appl. Mater. Interfaces 11(7), 7288–7295 (2019)

    Article  Google Scholar 

  28. F. Herrera, J. Owrutsky, Molecular polaritons for controlling chemistry with quantum optics. J. Chem. Phys. 152(10), 100902-1–100902-19 (2020)

  29. J. Flick, N. Rivera, P. Narang, Strong light-matter coupling in quantum chemistry and quantum photonics. Nanophotonics 7(9), 1479–1501 (2018)

    Article  Google Scholar 

  30. P. Törmä, W.L. Barnes, Strong coupling between surface plasmon polaritons and emitters: a review. Rep. Prog. Phys. 78(1), 013901 (2014)

    Article  ADS  Google Scholar 

  31. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Photons and Atoms—Introduction to Quantum Electrodynamics (Wiley-Interscience, New York, 1989)

  32. D.S. Dovzhenko, S.V. Ryabchuk, Yu.P. Rakovich, I.R. Nabiev, Light-matter interaction in the strong coupling regime: configurations, conditions, and applications. Nanoscale 10(8), 3589–3605 (2018)

    Article  Google Scholar 

  33. E. Orgiu, J. George, J.A. Hutchison, E. Devaux, J.F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, Conductivity in organic semiconductors hybridized with the vacuum field. Nat. Mater. 14(11), 1123–1129 (2015)

    Article  ADS  Google Scholar 

  34. M. Hertzog, M. Wang, J. Mony, K. Börjesson, Strong light-matter interactions: a new direction within chemistry. Chem. Soc. Rev. 48(3), 937–961 (2019)

    Article  Google Scholar 

  35. E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J.M. Gérard, J. Bloch, Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95(6), 067401 (2005)

    Article  ADS  Google Scholar 

  36. J.P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L.V. Keldysh, V.D. Kulakovskii, T.L. Reinecke, A. Forchel, Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432(7014), 197–200 (2004)

    Article  ADS  Google Scholar 

  37. I.D. Rukhlenko, D. Handapangoda, M. Premaratne, A.V. Fedorov, A.V. Baranov, C. Jagadish, Spontaneous emission of guided polaritons by quantum dot coupled to metallic nanowire: Beyond the dipole approximation. Opt. Express 17(20), 17570–17581 (2009)

    Article  ADS  Google Scholar 

  38. A. Shalabney, J. George, J.A. Hutchison, G. Pupillo, C. Genet, T.W. Ebbesen, Coherent coupling of molecular resonators with a microcavity mode. Nat. Commun. 6(1), 1–6 (2015)

    Article  Google Scholar 

  39. P.A. Hobson, W.L. Barnes, D.G. Lidzey, G.A. Gehring, D.M. Whittaker, M.S. Skolnick, S. Walker, Strong exciton–photon coupling in a low-Q all-metal mirror microcavity. Appl. Phys. Lett. 81(19), 3519–3521 (2002)

    Article  ADS  Google Scholar 

  40. R. Cerna, D. Sarchi, T.K. Paraïso, G. Nardin, Y. Léger, M. Richard, B. Pietka, E. Daif, F. Morier-Genoud, V. Savona, Coherent optical control of the wave function of zero-dimensional exciton polaritons. Phys. Rev. B 80(12), 121309 (2009)

    Article  ADS  Google Scholar 

  41. Darius Urbonas, Thilo Stöferle, Fabio Scafirimuto, Ullrich Scherf, R.F. Mahrt, Zero-dimensional organic exciton-polaritons in tunable coupled Gaussian defect microcavities at room temperature. ACS Photonics 3(9), 1542–1545 (2016)

    Article  Google Scholar 

  42. F. Zhou, I. Abdelwahab, K. Leng, K.P. Loh, W. Ji, 2D perovskites with giant excitonic optical nonlinearities for high-performance sub-bandgap photodetection. Adv. Mater. 31(48), 1904155 (2019)

    Article  Google Scholar 

  43. A. P. Schlaus, M. S. Spencer, X. Y. Zhu, Light–matter interaction and lasing in lead halide perovskites. Acc. Chem. Rese. 52(10), 2950–2959 (2019)

  44. D. Kottilil, M. Gupta, C. Vijayan, P.K. Bharadwaj, W. Ji, Multiphoton-pumped highly polarized polariton microlasers from single crystals of a dye-coordinated metal-organic framework. Adv. Funct. Mater. 30(32), 2003294 (2020)

    Article  Google Scholar 

  45. H. He, E. Ma, Y. Cui, Y. Jiancan, Yu. Yang, T. Song, W. Chuan-De, X. Chen, B. Chen, G. Qian, Polarized three-photon-pumped laser in a single MOF microcrystal. Nat. Commun. 7(1), 1–7 (2016)

    Article  Google Scholar 

  46. X. Wang, Q. Liao, X. Zhenzhen, W. Yishi, L. Wei, L. Xiaomei, F. Hongbing, Exciton-polaritons with size-tunable coupling strengths in self-assembled organic microresonators. ACS Photonics 1(5), 413–420 (2014)

    Article  Google Scholar 

  47. H. Bahsoun, T. Chervy, A. Thomas, K. Bö rjesson, M. Hertzog, J. George, E. Devaux, J.A. Hutchison, T.W. Ebbesen, Electronic light-matter strong coupling in nanofluidic Fabry-Pérot cavities. ACS Photonics 5(1), 225–232 (2018)

    Article  Google Scholar 

  48. D. M. Coles, Q. Chen, L. C. Flatten, J. M. Smith, K. Müllen, A. Narita, D. G. Lidzey, Strong exciton–photon coupling in a nanographene filled microcavity. Nano Lett. 17(9), 5521–5525 (2017)

  49. D.M. Coles, Y. Yang, Y. Wang, R.T. Grant, R.A. Taylor, S.K. Saikin, A. Aspuru-Guzik, D.G. Lidzey, J.K.-H. Tang, J.M. Smith, Strong coupling between chlorosomes of photosynthetic bacteria and a confined optical cavity mode. Nat. Commun. 5(1), 1–9 (2014)

  50. C.P. Dietrich, A. Steude, L. Tropf, M. Schubert, N.M. Kronenberg, An exciton-polariton laser based on biologically produced fluorescent protein. Sci. Adv. 2(8), e1600666 (2016)

    Article  ADS  Google Scholar 

  51. J. Keeling, S. Kéna-Cohen, Bose–Einstein condensation of exciton-polaritons in organic microcavities. Ann. Rev. Phys. Chem. 71, 435–459 (2020)

    Article  Google Scholar 

  52. H.S. Quah, W. Chen, M.K. Schreyer, H. Yang, M.W. Wong, W. Ji, J.J. Vittal, Multiphoton harvesting metal-organic frameworks. Nat. Commun. 6(1), 1–7 (2015)

    Article  Google Scholar 

  53. X. Jiang, L. Zhang, S. Liu, Y. Zhang, Z. He, Wenjia Li, Feng Zhang, Yihuang Shi, Yu. Wei Lü, W. Li, Ultrathin metal-organic framework: an emerging broadband nonlinear optical material for ultrafast photonics. Adv. Opt. Mater. 6(16), 1800561 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kottilil, D., Babusenan, A., Vijayan, C. et al. Strong light–matter interaction in organic microcavity polaritons: essential criteria, design principles and typical configurations. Eur. Phys. J. Spec. Top. 230, 4091–4097 (2021). https://doi.org/10.1140/epjs/s11734-021-00224-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00224-8

Navigation