Skip to main content
Log in

Topology Optimization of 3D-printed joints under crash loads using Evolutionary Algorithms

  • Industrial Application Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

A Correction to this article was published on 18 October 2021

This article has been updated

Abstract

In order to take full advantage of the enormous design freedom offered by Additive Manufacturing (AM) technologies, the use of Topology Optimization (TO) methods becomes essential. Although TO is well-established in many disciplines, the problems in vehicle crashworthiness pose severe difficulties for standard, gradient-based approaches, due to high noisiness, multi-modality, and discontinuous nature of the nonlinear simulation responses considered typically as objectives and constraints. In this article, we propose to use Evolutionary Algorithms (EAs) together with a suitable low-dimensional representation in an extended version of the Evolutionary Level Set Method (EA-LSM), able to address complex 3D crash TO problems. The method is used to optimize a 3D-printed metal joint in a hybrid S-rail structure under axial crash loading, inspired by novel frame design concepts in industry. The obtained results show that the method is capable of handling optimization problems with multiple constraints, including challenging acceleration responses, and yields significantly better solutions than the state-of-the-art methods. Finally, the robustness of the obtained designs is studied, demonstrating the ability of EA-LSM to find designs of low sensitivity w.r.t. small variations of the loading conditions, which is crucial from the perspective of industrial applications of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Change history

Notes

  1. Solid Isotropic Material with Penalization (Bendsøe and Sigmund 2004).

  2. The local level set basis function is referred to as a Topology Description Function (TDF) (Guo et al. 2016; de Ruiter and van Keulen 2004; Zhang et al. 2016), as well.

  3. Please note that the deletion of the finite elements in a given model is related exclusively to the layout and the shape of MMCs. Hence, elements deleted from the model in earlier optimization iterations can be present in the finite element models in later phases of the optimization process.

  4. According to a popular rule of thumb for ESs (Bäck 2014), the convergence velocity of the algorithm can be estimated as \({c\sim \mu \ln \left( \frac{\lambda }{\mu }\right) }\), where \({\lambda }\) is the number of offspring individuals and \({\mu }\) is the number of parents in the population.

  5. Another rule of thumb (Bäck 2014) states that \({c\sim \frac{1}{n}}\), where n is the dimensionality of the optimization problem.

  6. Please note that more complex design domains can be considered in a similar way.

  7. http://www.3i-print.com (accessed 8 April 2021).

References

  • Aage N, Andreassen E, Lazarov BS (2015) Topology optimization using PETSc: an easy-to-use, fully parallel, open source topology optimization framework. Struct Multidisc Optim 51(3):565–572. https://doi.org/10.1007/s00158-014-1157-0

    Article  MathSciNet  Google Scholar 

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393. https://doi.org/10.1016/j.jcp.2003.09.032

    Article  MathSciNet  MATH  Google Scholar 

  • Arora JS (2012) Introduction to optimum design, 3rd edn. Academic Press, Boston

    Google Scholar 

  • Aspenberg D (2011) Robust optimisation of structures: evaluation and incorporation of variations in simulation based design. PhD Thesis, Linköping University, Linköping

  • Aulig N (2017) Generic topology optimization based on local state features. PhD Thesis, Technische Universität Darmstadt, Darmstadt

  • Aulig N, Olhofer M (2016) State-based representation for structural topology optimization and application to crashworthiness. In: 2016 IEEE Congress on Evolutionary Computation (CEC), IEEE, Vancouver, pp 1642–1649, https://doi.org/10.1109/CEC.2016.7743985

  • Aulig N, Lepenies I (2012) A topology optimization interface for LS-DYNA. In: 11. LS-DYNA Forum, Ulm

  • Bai J, Zuo W (2020) Hollow structural design in topology optimization via moving morphable component method. Struct Multidisc Optim 61(1):187–205. https://doi.org/10.1007/s00158-019-02353-0

    Article  Google Scholar 

  • Bäck T (1996) Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming. Genetic algorithms. Oxford University Press, Oxford

    Book  Google Scholar 

  • Bäck T (2014) Introduction to evolution strategies. In: Proceedings of the 2014 annual conference on genetic and evolutionary computation, ACM, Vancouver

  • Bäck T, Schwefel HP (1993) An overview of evolutionary algorithms for parameter optimization. Evolut Comput 1(1):1–23. https://doi.org/10.1162/evco.1993.1.1.1

    Article  Google Scholar 

  • Bäck T, Foussette C, Krause P (2013) Contemporary evolution strategies. Springer, New York

    Book  Google Scholar 

  • Bandi P, Schmiedeler JP, Tovar A (2013) Design of crashworthy structures with controlled energy absorption in the hybrid cellular automaton framework. J Mech Des 135(9):091,002-091,002. https://doi.org/10.1115/1.4024722

    Article  Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202. https://doi.org/10.1007/BF01650949

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (2004) Topology optimization. Springer, Berlin

    Book  Google Scholar 

  • Beyer HG, Sendhoff B (2007) Robust optimization: a comprehensive survey. Comput Methods Appl Mech Eng 196(33):3190–3218. https://doi.org/10.1016/j.cma.2007.03.003

    Article  MathSciNet  MATH  Google Scholar 

  • Bouhlel MA, Bartoli N, Otsmane A, Morlier J (2016) Improving kriging surrogates of high-dimensional design models by Partial Least Squares dimension reduction. Struct Multidisc Optim 53(5):935–952. https://doi.org/10.1007/s00158-015-1395-9

    Article  MathSciNet  MATH  Google Scholar 

  • Bouhlel MA, Bartoli N, Regis RG, Otsmane A, Morlier J (2018) Efficient global optimization for high-dimensional constrained problems by using the Kriging models combined with the partial least squares method. Eng Optim 50(12):2038–2053. https://doi.org/10.1080/0305215X.2017.1419344

    Article  MathSciNet  Google Scholar 

  • Branke J (1998) Creating robust solutions by means of evolutionary algorithms. In: Parallel problem solving from nature-PPSN V. Lecture notes in computer science, Springer, Berlin, pp 119–128

  • Brown MB, Forsythe AB (1974) Robust tests for the equality of variances. J Am Stat Assoc 69(346):364–367. https://doi.org/10.2307/2285659

    Article  MATH  Google Scholar 

  • Bujny M (2015) Development of a hybrid evolutionary approach for level set topology optimization. Master’s thesis, Technical University of Munich, Munich

  • Bujny M (2020) Level set topology optimization for crashworthiness using evolutionary algorithms and machine learning. PhD Thesis, Technical University of Munich, Munich. http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20201009-1540709-1-0

  • Bujny M, Aulig N, Olhofer M, Duddeck F (2016a) Evolutionary level set method for crashworthiness topology optimization. In: ECCOMAS Congress 2016, Crete Island

  • Bujny M, Aulig N, Olhofer M, Duddeck F (2016b) Evolutionary crashworthiness topology optimization of thin-walled structures. In: 11th ASMO UK/ISSMO/NOED2016: International conference on numerical optimisation methods for engineering design, Munich

  • Bujny M, Aulig N, Olhofer M, Duddeck F (2016c) Hybrid evolutionary approach for level set topology optimization. In: IEEE 2016 Congress on Evolutionary Computation (CEC), IEEE, Vancouver, pp 5092–5099. https://doi.org/10.1109/CEC.2016.7748335

  • Bujny M, Aulig N, Olhofer M, Duddeck F (2017a) Identification of optimal topologies for crashworthiness with the evolutionary level set method. Int J Crashworthiness 23(4):395–416. https://doi.org/10.1080/13588265.2017.1331493

    Article  Google Scholar 

  • Bujny M, Aulig N, Olhofer M, Duddeck F (2017b) Topology optimization of crash structures with the hybrid evolutionary level set method. In: 12th world congress of structural and multidisciplinary optimisation, Braunschweig

  • Bujny M, Olhofer M, Duddeck F (2017c) Optimal structures for crash by additive manufacturing. In: 1st ECCOMAS thematic conference on simulation for additive manufacturing, Munich

  • Bujny M, Aulig N, Olhofer M, Duddeck F (2018) Learning-based topology variation in evolutionary level set topology optimization. In: Proceedings of the genetic and evolutionary computation conference, ACM, Kyoto, pp 825–832, https://doi.org/10.1145/3205455.3205528

  • Canisius M (2017) Adding value with 3D printing-requirements for user, design and simulation. In: 2017 European Altair technology conference, Frankenthal

  • Cavazzuti M, Baldini A, Bertocchi E, Costi D, Torricelli E, Moruzzi P (2010) High performance automotive chassis design: a topology optimization based approach. Struct Multidisc Optim 44(1):45–56. https://doi.org/10.1007/s00158-010-0578-7

    Article  Google Scholar 

  • Chang DC (1974) Effects of flexible connections on body structural response. SAE Trans 83:233–244

    Google Scholar 

  • Chen BC, Kikuchi N (2001) Topology optimization with design-dependent loads. Finite Elements Anal Des 37(1):57–70. https://doi.org/10.1016/S0168-874X(00)00021-4

    Article  MATH  Google Scholar 

  • Christensen J (2015) Topology optimisation of structures exposed to large (non-linear) deformations. PhD Thesis, Coventry University, Coventry

  • Christensen J, Bastien C, Blundell MV (2012) Effects of roof crush loading scenario upon body in white using topology optimisation. Int J Crashworthiness 17(1):29–38. https://doi.org/10.1080/13588265.2011.625640

    Article  Google Scholar 

  • Coello Coello CA (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191(11–12):1245–1287. https://doi.org/10.1016/S0045-7825(01)00323-1

    Article  MathSciNet  MATH  Google Scholar 

  • Dalcín L, Paz R, Storti M (2005) MPI for Python. J Parallel Distrib Comput 65(9):1108–1115. https://doi.org/10.1016/j.jpdc.2005.03.010

    Article  Google Scholar 

  • Dalcín L, Paz R, Storti M, D’Elía J (2008) MPI for Python: performance improvements and MPI-2 extensions. J Parallel Distrib Comput 68(5):655–662. https://doi.org/10.1016/j.jpdc.2007.09.005

    Article  Google Scholar 

  • Dalcín LD, Paz RR, Kler PA, Cosimo A (2011) Parallel distributed computing using Python. Adv Water Resour 34(9):1124–1139. https://doi.org/10.1016/j.advwatres.2011.04.013

    Article  Google Scholar 

  • Denimal E, Haddad FE, Wong C, Salles L (2021a) Topological optimization of under-platform dampers with moving morphable components and global optimization algorithm for nonlinear frequency response. J Eng Gas Turbines Power 143(2):1. https://doi.org/10.1115/1.4049666

    Article  Google Scholar 

  • Denimal E, Renson L, Salles L (2021b) Topological optimisation of friction dampers for nonlinear resonances mitigation. In: Nodycon 2021, Rome

  • Dommaraju N, Bujny M, Menzel S, Olhofer M, Duddeck F (2019) Identifying topological prototypes using deep point cloud autoencoder networks. In: 2019 International conference on data mining workshops (ICDMW), IEEE, Beijing

  • Dommaraju N, Bujny M, Menzel S, Olhofer M, Duddeck F (2020) Simultaneous exploration of geometric features and performance in design optimization, In: 16th international LS-DYNA users conference, Detroit

  • Dommaraju N, Bujny M, Menzel S, Olhofer M, Duddeck F (2021) Evaluation of geometric similarity metrics for structural clusters generated using topology optimization. Preprint, In Review, https://doi.org/10.21203/rs.3.rs-250318/v1

  • Du J, Olhoff N (2004) Topological optimization of continuum structures with design-dependent surface loading-part I: new computational approach for 2D problems. Struct Multidisc Optim 27(3):151–165. https://doi.org/10.1007/s00158-004-0379-y

    Article  MATH  Google Scholar 

  • Duddeck F (2008) Multidisciplinary optimization of car bodies. Struct Multidisc Optim 35(4):375–389. https://doi.org/10.1007/s00158-007-0130-6

    Article  Google Scholar 

  • Duddeck F, Volz K (2012) A new topology optimization approach for crashworthiness of passenger vehicles based on physically defined equivalent static loads. In: Proceedings ICRASH conference, Milan

  • Duddeck F, Hunkeler S, Lozano P, Wehrle E, Zeng D (2016) Topology optimization for crashworthiness of thin-walled structures under axial impact using hybrid cellular automata. Struct Multidisc Optim 54(3):415–428. https://doi.org/10.1007/s00158-016-1445-y

    Article  Google Scholar 

  • Fang J, Sun G, Qiu N, Kim NH, Li Q (2016) On design optimization for structural crashworthiness and its state of the art. Struct Multidisc Optim 48:1–29. https://doi.org/10.1007/s00158-016-1579-y

    Article  Google Scholar 

  • Fender G, Marburg S, Duddeck F (2016) Identification of a set of candidate solutions for optimal positioning of damping layers. SAE Int J Passeng Cars-Mech Syst 9(3):987–994. https://doi.org/10.4271/2016-01-1778

    Article  Google Scholar 

  • Forrester A, Sobester A, Keane A (2008) Engineering design via surrogate modelling: a practical guide, 1st edn. Wiley, Hoboken

    Book  Google Scholar 

  • Fredricson H, Johansen T, Klarbring A, Petersson J (2003) Topology optimization of frame structures with flexible joints. Struct Multidisc Optim 25(3):199–214. https://doi.org/10.1007/s00158-003-0281-z

    Article  MathSciNet  MATH  Google Scholar 

  • Gibson I, Rosen D, Stucker B (2015) Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Gil A, Segura J, Temme NM (2007) Numerical methods for special functions. SIAM, Philadelphia

    Book  Google Scholar 

  • Guo X (2014) Doing topology optimization explicitly and geometrically: a new moving morphable components based framework. In: Frontiers in applied mechanics, Imperial College Press, London, pp 31–32

  • Guo X, Zhang W, Zhang J, Yuan J (2016) Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput Methods Appl Mech Eng 310:711–748. https://doi.org/10.1016/j.cma.2016.07.018

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen N (2016) CMA evolution strategy source code. http://www.cmap.polytechnique.fr/~nikolaus.hansen/html-pythoncma/frames.html, Accessed 2 Aug 2016

  • Hansen N, Kern S (2004) Evaluating the CMA evolution strategy on multimodal test functions. In: Parallel problem solving from nature-PPSN VIII, no. 3242 in Lecture notes in computer science, Springer, Berlin, pp 282–291

  • Hassani B, Hinton E (1998) A review of homogenization and topology optimization I: homogenization theory for media with periodic structure. Comput Struct 69(6):707–717. https://doi.org/10.1016/S0045-7949(98)00131-X

    Article  MATH  Google Scholar 

  • Huang X, Xie YM, Lu G (2007) Topology optimization of energy-absorbing structures. Int J Crashworthiness 12(6):663–675. https://doi.org/10.1080/13588260701497862

    Article  Google Scholar 

  • Jiang L, Chen S (2017) Parametric structural shape & topology optimization with a variational distance-regularized level set method. Comput Methods Appl Mech Eng 321:316–336. https://doi.org/10.1016/j.cma.2017.03.044

    Article  MathSciNet  MATH  Google Scholar 

  • Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Global Optim 13(4):455–492. https://doi.org/10.1023/A:1008306431147

    Article  MathSciNet  MATH  Google Scholar 

  • Kyriacou SA, Asouti VG, Giannakoglou KC (2014) Efficient PCA-driven EAs and metamodel-assisted EAs, with applications in turbomachinery. Eng Optim 46(7):895–911. https://doi.org/10.1080/0305215X.2013.812726

    Article  Google Scholar 

  • Kiani M, Motoyama K, Rais-Rohani M, Shiozaki H (2014) Joint stiffness analysis and optimization as a mechanism for improving the structural design and performance of a vehicle. Proc Inst Mech Eng Part D 228(6):689–700. https://doi.org/10.1177/0954407013516107

    Article  Google Scholar 

  • Lanfermann F, Schmitt S, Menzel S (2020) An effective measure to identify meaningful concepts in engineering design optimization. In: 2020 IEEE symposium series on computational intelligence (SSCI), pp 934–941, https://doi.org/10.1109/SSCI47803.2020.9308484

  • Levene H (1961) Robust tests for equality of variances, 92nd edn. Contributions to probability and statistics. California Stanford University Press, Stanford

    MATH  Google Scholar 

  • Liu K (2018) Cluster-based structural optimization and applications to crashworthiness. PhD Thesis, Purdue University, West Lafayette

  • Liu K, Detwiler D, Tovar A (2017) Metamodel-based global optimization of vehicle structures for crashworthiness supported by clustering methods. In: Advances in structural and multidisciplinary optimization, Springer, Cham, pp 1545–1557, https://doi.org/10.1007/978-3-319-67988-4-116

  • Liu Y (2008) Crashworthiness design of multi-corner thin-walled columns. Thin-Walled Struct 46(12):1329–1337. https://doi.org/10.1016/j.tws.2008.04.003

    Article  Google Scholar 

  • LSTC (2011) LS-TaSC-topology and shape computations for LS-DYNA, v2.0

  • LSTC (2014) LS-DYNA keyword user-S manual, Volume II-Material Models

  • Luo Z, Wang MY, Wang S, Wei P (2008) A level set-based parameterization method for structural shape and topology optimization. Int J Numerical Methods Eng 76(1):1–26. https://doi.org/10.1002/nme.2092

    Article  MathSciNet  MATH  Google Scholar 

  • LZN (2017) A car body inspired by nature. The flexible car body out of a 3D-Printer. Tech. rep., Laser Zentrum Nord, Hamburg

  • Maaranen H, Miettinen K, Penttinen A (2007) On initial populations of a genetic algorithm for continuous optimization problems. J Glob Optim 37(3):405. https://doi.org/10.1007/s10898-006-9056-6

    Article  MathSciNet  MATH  Google Scholar 

  • Matejka J, Glueck M, Bradner E, Hashemi A, Grossman T, Fitzmaurice G (2018) Dream lens: exploration and visualization of large-scale generative design datasets. In: Proceedings of the 2018 CHI conference on human factors in computing systems, ACM, New York, CHI ’18, pp 369:1–369:12, https://doi.org/10.1145/3173574.3173943

  • Mockus J (2012) Bayesian approach to global optimization: theory and applications. Springer Science & Business Media, google-Books-ID: VuKoCAAAQBAJ

  • Mozumder CK (2010) Topometry optimization of sheet metal structures for crashworthiness design using hybrid cellular automata. PhD Thesis, University of Notre Dame, Notre Dame

  • Norato JA, Bell BK, Tortorelli DA (2015) A geometry projection method for continuum-based topology optimization with discrete elements. Comput Methods Appl Mech Eng 293:306–327. https://doi.org/10.1016/j.cma.2015.05.005

    Article  MathSciNet  MATH  Google Scholar 

  • Ortmann C (2015) Entwicklung eines graphen- und heuristikbasierten Verfahrens zur Topologieoptimierung von Profilquerschnitten für Crashlastfälle. PhD Thesis, Bergische Universität Wuppertal, Wuppertal

  • Ortmann C, Schumacher A (2013) Graph and heuristic based topology optimization of crash loaded structures. Struct Multidisc Optim 47(6):839–854. https://doi.org/10.1007/s00158-012-0872-7

    Article  MATH  Google Scholar 

  • Park GJ (2010) Technical overview of the equivalent static loads method for non-linear static response structural optimization. Struct Multidisc Optim 43(3):319–337. https://doi.org/10.1007/s00158-010-0530-x

    Article  Google Scholar 

  • Patel NM (2007) Crashworthiness design using topology optimization. PhD Thesis, University of Notre Dame, Notre Dame

  • Pearson K (1905) The problem of the random walk. Nature 72(1865):294. https://doi.org/10.1038/072294b0

    Article  MATH  Google Scholar 

  • Pedersen CBW (2003) Topology optimization design of crushed 2D-frames for desired energy absorption history. Struct Multidisc Optim 25(5–6):368–382. https://doi.org/10.1007/s00158-003-0282-y

    Article  Google Scholar 

  • Pingen G, Waidmann M, Evgrafov A, Maute K (2010) A parametric level-set approach for topology optimization of flow domains. Struct Multidisc Optim 41(1):117–131. https://doi.org/10.1007/s00158-009-0405-1

    Article  MathSciNet  MATH  Google Scholar 

  • Rahnamayan S, Tizhoosh HR, Salama MMA (2007) A novel population initialization method for accelerating evolutionary algorithms. Comput Math Appl 53(10):1605–1614. https://doi.org/10.1016/j.camwa.2006.07.013

    Article  MathSciNet  MATH  Google Scholar 

  • Raponi E (2017) Development of surrogate modeling techniques for level set topology optimization. Master’s Thesis, University of Camerino, Camerino

  • Raponi E (2021) Towards the usage of advanced composite materials in the optimization of wind turbine blades. PhD Thesis, University of Camerino

  • Raponi E, Bujny M, Olhofer M, Aulig N, Boria S, Duddeck F (2017) Kriging-guided level set method for crash topology optimization. In: 7th GACM colloquium on computational mechanics for young scientists from academia and industry, GACM, Stuttgart

  • Raponi E, Bujny M, Olhofer M, Aulig N, Boria S, Duddeck F (2019a) Kriging-assisted topology optimization of crash structures. Comput Methods Appl Mech Eng 348:730–752. https://doi.org/10.1016/j.cma.2019.02.002

    Article  MathSciNet  MATH  Google Scholar 

  • Raponi E, Bujny M, Olhofer M, Boria S, Duddeck F (2019b) Hybrid kriging-assisted level set method for structural topology optimization. In: 11th international conference on evolutionary computation theory and applications, Vienna

  • Raponi E, Wang H, Bujny M, Boria S, Doerr C (2020) High dimensional Bayesian optimization assisted by principal component analysis. In: 16th international conference on parallel problem solving from nature, Leiden

  • Rostami P, Marzbanrad J (2020a) Cooperative coevolutionary topology optimization using moving morphable components. Eng Optim 53(6):962–983. https://doi.org/10.1080/0305215X.2020.1759579

  • Rostami P, Marzbanrad J (2020b) Hybrid algorithms for handling the numerical noise in topology optimization. Acta Mech Sin 36(2):536–554. https://doi.org/10.1007/s10409-020-00942-7

    Article  MathSciNet  Google Scholar 

  • Rostami P, Marzbanrad J (2021) Identification of optimal topologies for continuum structures using metaheuristics: a comparative study. Archiv Comput Methods Eng https://doi.org/10.1007/s11831-021-09546-1

  • Rothlauf F (2006) Representations for genetic and evolutionary algorithms. Springer, Berlin

    Book  Google Scholar 

  • Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4(3–4):250–252. https://doi.org/10.1007/BF01742754

    Article  Google Scholar 

  • Subedi SC, Verma CS, Suresh K (2020) A review of methods for the geometric post-processing of topology optimized models. J Comput Inform Sci Eng 20(6):060801. https://doi.org/10.1115/1.4047429

    Article  Google Scholar 

  • de Ruiter M, van Keulen F (2004) Topology optimization using a topology description function. Struct Multidisc Optim 26(6):406–416. https://doi.org/10.1007/s00158-003-0375-7

    Article  Google Scholar 

  • Schneider D, Schumacher A (2018) finding optimized layouts for ribs on surfaces using the graph and heuristic based topology optimization. In: Advances in structural and multidisciplinary optimization, Springer International Publishing, Braunschweig, pp 1615–1628, https://doi.org/10.1007/978-3-319-67988-4-121

  • Schneider D, Link S, Schumacher A, Ortmann C (2018) Graph and heuristic based topology optimization of crashworthiness composite profile structures manufactured by vacuum infusion and gluing. In: Proceeding of the 13th world congress on computational mechanics (WCCM XIII) and 2nd Pan American congress on computational mechanics (PANACM II), Braunschweig https://doi.org/10.1007/s00158-012-0872-7

  • Schneider D, Schumacher A, Donhauser T, Huf A, Schmeer S (2019) Flexible graph syntax for the topology optimization of crashworthiness profile structures made from thermoplastic composites. Key Eng Mater 809:493–499

    Article  Google Scholar 

  • Schumacher A, Ortmann C (2013) Rule generation for optimal topology changes of crash-loaded structures. In: 10th world congress on structural and multidisciplinary optimization, Orlando

  • Sigmund O (2014) A 99 line topology optimization code written in Matlab. Struct Multidisc Optim 21(2):120–127. https://doi.org/10.1007/s001580050176

    Article  Google Scholar 

  • Sun G, Song X, Baek S, Li Q (2014) Robust optimization of foam-filled thin-walled structure based on sequential Kriging metamodel. Struct Multidisc Optim 49(6):897–913. https://doi.org/10.1007/s00158-013-1017-3

    Article  Google Scholar 

  • Suzuki K, Kikuchi N (1991) A homogenization method for shape and topology optimization. Comput Methods Appl Mech Eng 93(3):291–318. https://doi.org/10.1016/0045-7825(91)90245-2

    Article  MATH  Google Scholar 

  • Tang Z, Liu S, Zhang Z (2013) Analysis of energy absorption characteristics of cylindrical multi-cell columns. Thin-Walled Struct 62:75–84. https://doi.org/10.1016/j.tws.2012.05.019

    Article  Google Scholar 

  • Torstenfelt B, Klarbring A (2007) Conceptual optimal design of modular car product families using simultaneous size, shape and topology optimization. Finite Elements Anal Des 43(14):1050–1061. https://doi.org/10.1016/j.finel.2007.06.005

    Article  MathSciNet  Google Scholar 

  • Tovar A (2004) Bone remodeling as a hybrid cellular automaton optimization process. PhD Thesis, University of Notre Dame, Notre Dame

  • van Dijk NP, Maute K, Langelaar M, Fv Keulen (2013) Level-set methods for structural topology optimization: a review. Struct Multidisc Optim 48(3):437–472. https://doi.org/10.1007/s00158-013-0912-y

  • Wang Y, Luo Z, Kang Z, Zhang N (2015) A multi-material level set-based topology and shape optimization method. Comput Methods Appl Mech Eng 283:1570–1586. https://doi.org/10.1016/j.cma.2014.11.002

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Z, Hutter F, Zoghi M, Matheson D, De Freitas N (2016) Bayesian optimization in a billion dimensions via random embeddings. J Artif Intell Res 55(1):361–387

    Article  MathSciNet  Google Scholar 

  • Wein F, Dunning P, Norato JA (2019) A review on feature-mapping methods for structural optimization ArXiv:1910.10770

  • Wolfram S (2002) A new kind of science. Wolfram Media Inc., Champaign

    MATH  Google Scholar 

  • Xiang J, Chen Y, Guo Y (2013) Synchronized design optimization method of body joints and major cross sectional members. In: Proceedings of the FISITA 2012 world automotive congress pp 531–538, https://doi.org/10.1007/978-3-642-33835-9-48

  • Xie YM, Steven GP (1997) Evolutionary structural optimization. Springer, London

    Book  Google Scholar 

  • Yang XY, Xie YM, Steven GP, Querin OM (1999) Bidirectional evolutionary method for stiffness optimization. AIAA J 37(11):1483–1488. https://doi.org/10.2514/2.626

    Article  Google Scholar 

  • Yi SI, Lee JY, Park GJ (2012) Crashworthiness design optimization using equivalent static loads. Proc Inst Mech Eng Part D 226(1):23–38. https://doi.org/10.1177/0954407011411638

    Article  Google Scholar 

  • Yin H, Wen G, Wu X, Qing Q, Hou S (2014) Crashworthiness design of functionally graded foam-filled multi-cell thin-walled structures. Thin-Walled Struct 85:142–155. https://doi.org/10.1016/j.tws.2014.08.019

    Article  Google Scholar 

  • Zeng D (2018) Enhanced hybrid cellular automata for crashworthiness topology optimization of thin-walled structures. PhD Thesis, Technical University of Munich, Munich

  • Zeng D, Duddeck F (2017) Improved hybrid cellular automata for crashworthiness optimization of thin-walled structures. Struct Multidisc Optim 56(1):101–115. https://doi.org/10.1007/s00158-017-1650-3

    Article  MathSciNet  Google Scholar 

  • Zhang H, Wang MY, Chen F, Wang Y, Kumar AS, Fuh JYH (2017) Design and development of a soft gripper with topology optimization. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), Vancouver, pp 6239–6244, https://doi.org/10.1109/IROS.2017.8206527

  • Zhang W, Yuan J, Zhang J, Guo X (2016) A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model. Struc Multidisc Optim 53(6):1243–1260. https://doi.org/10.1007/s00158-015-1372-3

    Article  MathSciNet  Google Scholar 

  • Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336. https://doi.org/10.1016/0045-7825(91)90046-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Bujny.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Replication of results

All the information needed to replicate the results is available in the paper and the referenced articles. The authors wish to withhold the finite element models and the optimization code for commercialization purposes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Emilio Carlos Nelli Silva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bujny, M., Olhofer, M., Aulig, N. et al. Topology Optimization of 3D-printed joints under crash loads using Evolutionary Algorithms. Struct Multidisc Optim 64, 4181–4206 (2021). https://doi.org/10.1007/s00158-021-03053-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-021-03053-4

Keywords

Navigation