Skip to main content
Log in

LncRNA ORLNC1 Promotes Bone Marrow Mesenchyml Stem Cell Pyroptosis Induced by Advanced Glycation End Production by Targeting miR-200b-3p/Foxo3 Pathway

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Bone marrow mesenchymal stem cells (BMSCs) are a type of adult stem cells that originate from the mesoderm and have important roles in the body because of their self-renewal and multidirectional differentiation potential. Now it has been proved that BMSCs are closely related to the development of osteoporosis (OP). There is growing evidence that lncRNAs are involved in regulating the pyroptosis of BMSCs. And advanced glycation end-products (AGEs) have been recognized as NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome activators. In this study, we aimed to explore the role of lncRNA ORLNC1 (NONMMUT016106.2) on the pyroptosis of BMSCs under CML (Nε-(carboxymethyl) lysine, the most common AGEs) treatment and its specific molecular mechanisms. Our study revealed that CML treatment promoted pyroptosis of BMSCs and upregulated ORLNC1 expression. As a competing endogenous RNA (ceRNA) of miR-200b-3p, the level of ORLNC1 was negatively correlated with miR-200b-3p. Foxo3 was a target of miR-200b-3p and ORLNC1 promoted BMSCs pyroptosis induced by CML through targeting miR-200b-3p/Foxo3 pathway.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding authors on reasonable request.

References

  1. Curtis, E. M., et al. (2016). Recent advances in the pathogenesis and treatment of osteoporosis. Clinical Medicine (London, England), 16(4), 360–364.

    Article  Google Scholar 

  2. Khosla, S., & Hofbauer, L. C. (2017). Osteoporosis treatment: Recent developments and ongoing challenges. The Lancet Diabetes and Endocrinology, 5(11), 898–907.

    Article  PubMed  Google Scholar 

  3. Kling, J. M., Clarke, B. L., & Sandhu, N. P. (2014). Osteoporosis prevention, screening, and treatment: A review. Journal of Women’s Health (2002), 23(7), 563–572.

    Article  Google Scholar 

  4. Bartolucci, J., et al. (2017). Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure: A phase 1/2 randomized controlled trial (RIMECARD Trial [Randomized Clinical Trial of Intravenous Infusion Umbilical Cord Mesenchymal Stem Cells on Cardiopathy]). Circulation Research, 121(10), 1192–1204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guo, Y., et al. (2017). Succinate and its G-protein-coupled receptor stimulates osteoclastogenesis. Nature Communications, 8, 15621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wu, J. Y., et al. (2011). Gsα enhances commitment of mesenchymal progenitors to the osteoblast lineage but restrains osteoblast differentiation in mice. The Journal of Clinical Investigation, 121(9), 3492–3504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. D’Souza, S., et al. (2011). Gfi1 expressed in bone marrow stromal cells is a novel osteoblast suppressor in patients with multiple myeloma bone disease. Blood, 118(26), 6871–6880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Iyer, M. K., et al. (2015). The landscape of long noncoding RNAs in the human transcriptome. Nature Genetics, 47(3), 199–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu, Y., et al. (2019). The role of lncRNAs in the distant metastasis of breast cancer. Frontiers in Oncology, 9, 407.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang, Y., et al. (2015). Genome-wide microarray analysis of long non-coding RNAs in eutopic secretory endometrium with endometriosis. Cellular Physiology and Biochemistry, 37(6), 2231–2245.

    Article  CAS  PubMed  Google Scholar 

  11. Zhao, D., et al. (2019). LncRNA HIF2PUT inhibited osteosarcoma stem cells proliferation, migration and invasion by regulating HIF2 expression. Artif Cells Nanomed Biotechnol, 47(1), 1342–1348.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, Y., et al. (2019). LncRNA MALAT1 promotes osteoarthritis by modulating miR-150-5p/AKT3 axis. Cell & Bioscience, 9, 54.

    Article  CAS  Google Scholar 

  13. Yang, L., et al. (2019). The long non-coding RNA-ORLNC1 regulates bone mass by directing mesenchymal stem cell fate. Molecular Therapy, 27(2), 394–410.

    Article  CAS  PubMed  Google Scholar 

  14. Shirasuna, K., Karasawa, T., & Takahashi, M. (2020). Role of the NLRP3 inflammasome in preeclampsia. Front Endocrinol (Lausanne), 11, 80.

    Article  Google Scholar 

  15. Chen, L., et al. (2018). Neutrophil extracellular traps promote macrophage pyroptosis in sepsis. Cell Death & Disease, 9(6), 597.

    Article  CAS  Google Scholar 

  16. Deng, M., et al. (2018). The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis. Immunity, 49(4), 740-753 e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Han, S. Y., et al. (2019). High-mobility group box 1 is associated with the inflammatory pathogenesis of graves’ orbitopathy. Thyroid, 29(6), 868–878.

    Article  CAS  PubMed  Google Scholar 

  18. Kaur, H., Kamalov, M., & Brimble, M. A. (2016). Chemical synthesis of peptides containing site-specific advanced glycation endproducts. Accounts of Chemical Research, 49(10), 2199–2208.

    Article  CAS  PubMed  Google Scholar 

  19. Li, C. J., et al. (2015). MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. The Journal of Clinical Investigation, 125(4), 1509–1522.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang, N., et al. (2019). LncRNA MSC-AS1 promotes osteogenic differentiation and alleviates osteoporosis through sponging microRNA-140-5p to upregulate BMP2. Biochemical and Biophysical Research Communications, 519(4), 790–796.

    Article  CAS  PubMed  Google Scholar 

  21. Hou, C., Wang, D., & Zhang, L. (2019). MicroRNA34a3p inhibits proliferation of rheumatoid arthritis fibroblastlike synoviocytes. Molecular Medicine Reports, 20(3), 2563–2570.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu, L., et al. (2018). LncRNA-PCAT1 targeting miR-145-5p promotes TLR4-associated osteogenic differentiation of adipose-derived stem cells. Journal of Cellular and Molecular Medicine, 22(12), 6134–6147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ding, D., et al. (2018). LncRNA H19/miR-29b-3p/PGRN Axis promoted epithelial-mesenchymal transition of colorectal cancer cells by acting on Wnt signaling. Molecules and Cells, 41(5), 423–435.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, K., et al. (2014). The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circulation Research, 114(9), 1377–1388.

    Article  CAS  PubMed  Google Scholar 

  25. Dominici, M., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy, 8(4), 315–7.

    Article  CAS  PubMed  Google Scholar 

  26. Gangoiti, M. V., et al. (2008). Opposing effects of bisphosphonates and advanced glycation end-products on osteoblastic cells. European Journal of Pharmacology, 600(1–3), 140–147.

    Article  CAS  PubMed  Google Scholar 

  27. Weinberg, E., Maymon, T., & Weinreb, M. (2014). AGEs induce caspase-mediated apoptosis of rat BMSCs via TNFα production and oxidative stress. Journal of Molecular Endocrinology, 52(1), 67–76.

    Article  CAS  PubMed  Google Scholar 

  28. Wang, L., et al. (2017). NLRP3 inflammasome activation in mesenchymal stem cells inhibits osteogenic differentiation and enhances adipogenic differentiation. Biochemical and Biophysical Research Communications, 484(4), 871–877.

    Article  CAS  PubMed  Google Scholar 

  29. Yan, B., et al. (2020). Stem cell-derived exosomes prevent pyroptosis and repair ischemic muscle injury through a novel exosome/circHIPK3/ FOXO3a pathway. Theranostics, 10(15), 6728–6742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liang, C., et al. (2020). Exosomes of Human Umbilical Cord MSCs Protect Against Hypoxia/Reoxygenation-Induced Pyroptosis of Cardiomyocytes via the miRNA-100–5p/FOXO3/NLRP3 Pathway. Front Bioeng Biotechnol, 8, 615850.

    Article  PubMed  Google Scholar 

  31. Li, X., et al. (2014). MicroRNA-30d regulates cardiomyocyte pyroptosis by directly targeting foxo3a in diabetic cardiomyopathy. Cell Death Dis, 5, e1479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pu, Q., et al. (2017). Atg7 Deficiency Intensifies Inflammasome Activation and Pyroptosis in Pseudomonas Sepsis. The Journal of Immunology, 198(8), 3205–3213.

    Article  CAS  PubMed  Google Scholar 

  33. Pfalzgraff, A., et al. (2017). Synthetic anti-endotoxin peptides inhibit cytoplasmic LPS-mediated responses. Biochemical Pharmacology, 140, 64–72.

    Article  CAS  PubMed  Google Scholar 

  34. Aglietti, R. A., & Dueber, E. C. (2017). Recent Insights into the Molecular Mechanisms Underlying Pyroptosis and Gasdermin Family Functions. Trends in Immunology, 38(4), 261–271.

    Article  CAS  PubMed  Google Scholar 

  35. Man, S. M., Karki, R., & Kanneganti, T. D. (2017). Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunological Reviews, 277(1), 61–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Miao, E. A., et al. (2010). Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nature Immunology, 11(12), 1136–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Qiu, Z., et al. (2019). Lipopolysaccharide (LPS) aggravates high glucose- and hypoxia/reoxygenation-induced injury through activating ROS-Dependent NLRP3 inflammasome-mediated pyroptosis in H9C2 cardiomyocytes. Journal of Diabetes Research, 2019, 8151836.

    PubMed  PubMed Central  Google Scholar 

  38. Doherty, T. A., Brydges, S. D., & Hoffman, H. M. (2011). Autoinflammation: Translating mechanism to therapy. Journal of Leukocyte Biology, 90(1), 37–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wen, H., Ting, J. P., & O’Neill, L. A. (2012). A role for the NLRP3 inflammasome in metabolic diseases–did Warburg miss inflammation? Nature Immunology, 13(4), 352–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wen, H., et al. (2011). Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nature Immunology, 12(5), 408–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yamagishi, S. (2011). Role of advanced glycation end products (AGEs) in osteoporosis in diabetes. Current Drug Targets, 12(14), 2096–2102.

    Article  CAS  PubMed  Google Scholar 

  42. Reynaert, N. L., et al. (2016). Advanced glycation end products and their receptor in age-related, non-communicable chronic inflammatory diseases; Overview of clinical evidence and potential contributions to disease. International Journal of Biochemistry & Cell Biology, 81(Pt B), 403–418.

    Article  CAS  Google Scholar 

  43. Kanazawa, I. (2017). Interaction between bone and glucose metabolism [Review]. Endocrine Journal, 64(11), 1043–1053.

    Article  CAS  PubMed  Google Scholar 

  44. Notsu, M., et al. (2014). Advanced glycation end product 3 (AGE3) suppresses the mineralization of mouse stromal ST2 cells and human mesenchymal stem cells by increasing TGF-β expression and secretion. Endocrinology, 155(7), 2402–2410.

    Article  PubMed  CAS  Google Scholar 

  45. Li, D., et al. (2017). The microRNAs miR-200b-3p and miR-429-5p target the LIMK1/CFL1 pathway to inhibit growth and motility of breast cancer cells. Oncotarget, 8(49), 85276–85289.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Liu, J., Wang, L., & Li, X. (2018). HMGB3 promotes the proliferation and metastasis of glioblastoma and is negatively regulated by miR-200b-3p and miR-200c-3p. Cell Biochemistry and Function, 36(7), 357–365.

    Article  CAS  PubMed  Google Scholar 

  47. Nwaeburu, C. C., et al. (2017). Quercetin-induced miR-200b-3p regulates the mode of self-renewing divisions in pancreatic cancer. Molecular Cancer, 16(1), 23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Wu, J., et al. (2017). Effect of the interaction between MiR-200b-3p and DNMT3A on cartilage cells of osteoarthritis patients. Journal of Cellular and Molecular Medicine, 21(10), 2308–2316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Han, N., et al. (2020). YAP1 is required for the angiogenesis in retinal microvascular endothelial cells via the inhibition of MALAT1-mediated miR-200b-3p in high glucose-induced diabetic retinopathy. Journal of Cellular Physiology, 235(2), 1309–1320.

    Article  CAS  PubMed  Google Scholar 

  50. Bosch, T. C., et al. (2010). The Hydra polyp: Nothing but an active stem cell community. Development, Growth & Differentiation, 52(1), 15–25.

    Article  CAS  Google Scholar 

  51. Boehm, A. M., Rosenstiel, P., & Bosch, T. C. (2013). Stem cells and aging from a quasi-immortal point of view. BioEssays, 35(11), 994–1003.

    Article  CAS  PubMed  Google Scholar 

  52. Banasik, K., et al. (2011). The FOXO3A rs2802292 G-allele associates with improved peripheral and hepatic insulin sensitivity and increased skeletal muscle-FOXO3A mRNA expression in twins. Journal of Clinical Endocrinology and Metabolism, 96(1), E119–E124.

    Article  CAS  PubMed  Google Scholar 

  53. He, Q., et al. (2014). Shorter men live longer: association of height with longevity and FOXO3 genotype in American men of Japanese ancestry. PLoS One, 9(5), e94385.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Zhang, X., et al. (2011). Akt, FoxO and regulation of apoptosis. Biochimica et Biophysica Acta, 1813(11), 1978–1986.

    Article  CAS  PubMed  Google Scholar 

  55. Peng, S. L. (2007). Immune regulation by Foxo transcription factors. Autoimmunity, 40(6), 462–469.

    Article  CAS  PubMed  Google Scholar 

  56. You, H., et al. (2006). FOXO3a-dependent regulation of Puma in response to cytokine/growth factor withdrawal. Journal of Experimental Medicine, 203(7), 1657–1663.

    Article  CAS  Google Scholar 

  57. Becker, T., et al. (2010). FOXO-dependent regulation of innate immune homeostasis. Nature, 463(7279), 369–373.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by 2019 Hebei Provincial Government-Funded Clinical Talents Training and Basic Research projects from China.(2019-14)We would like to thank all the researchers and study participants for their contributions.

Funding

This work was supported by 2019 Hebei Provincial Government-Funded Clinical Talents Training and Basic Research projects from China. (2019–14).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Lili Zhang; Data curation: Shilun Li; Formal analysis: Juan Li; Funding acquisition: Yukun Li; Methodology: Shilun Li; Project administration: Lili Zhang and Shilun Li; Writing—original draft: Lili Zhang; Writing—review & editing: Lili Zhang and Juan Li. All authors and participants reviewed the paper and approved the final manuscript.

Corresponding author

Correspondence to Yukun Li.

Ethics declarations

Ethics Approval and Consent to Participate

All experimental processes were performed in strict compliance with the regulations of the Ethics Committee of Hebei Medical University. Also, all animal experiments were approved by the Ethics Committee of Hebei Medical University.

Consent for Publication

Not applicable.

Declarations of Interest

none.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Li, S., Li, J. et al. LncRNA ORLNC1 Promotes Bone Marrow Mesenchyml Stem Cell Pyroptosis Induced by Advanced Glycation End Production by Targeting miR-200b-3p/Foxo3 Pathway. Stem Cell Rev and Rep 17, 2262–2275 (2021). https://doi.org/10.1007/s12015-021-10247-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-021-10247-2

Keywords

Navigation