Skip to main content

Advertisement

Log in

Effects 10 years elevated atmospheric CO2 on soil bacterial community structure in Sanjiang Plain, Northeastern China

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

This study was conducted over 10 years using an open top chamber experiment in the Sanjiang Plain to explore the impact of environmental parameters and bacterial community composition and structure under long-term conditions of elevated CO2 concentrations (eCO2, 550 μmol·mol−1).

Methods

Illumina sequencing of 16S rRNA was used to determine soil bacterial communities over the long-term in the Sanjiang Plain. Vegetation characteristics and soil properties were also investigated.

Results

Dominant bacterial group was Proteobacteria, accounting for 23.52–39.03%, while there were remarkable changes in the bacterial community composition. eCO2 increased the relative abundance of Subgroup_6 and decreased those of AD3 and Candidatus_Udaeobacter. These variations might be related to gene functions. A redundancy analysis indicated that there was a strong relationship between dominant bacterial phyla and environmental factors (photosynthetic rate, aboveground biomass and stomatal conductance). Structural equation model (SEM) showed that eCO2 and year both affected the soil bacterial community. In contrast, the short-term had greater impacts on the bacterial community under eCO2 compared with the long-term via indirect effects on vegetation and soil characteristics.

Conclusions

eCO2 affect soil bacterial community through indirect effects on soil nutrient content and vegetation characteristics in the short-term whereas showed adaptability to eCO2 in the long term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANOVA:

One-way analysis of variance

ABG:

Aboveground biomass

CK:

Control check

CO2 :

Carbon dioxide

eCO2 :

Elevated CO2 levels

DOC:

Dissolved organic carbon

G s :

Stomatal conductance

LSD:

Least significant difference

MC:

Moisture content

NH4 +N:

Soil ammonium

NO3 N:

Soil nitrate

OTC:

Open-top chamber

OTUs:

Operational taxonomic units

PCoA:

Principal coordinate analysis

PICRUSt2:

Phylogenetic investigation of communities by reconstruction of unobserved states

P n :

Photosynthetic rate

RDA:

Redundancy analysis

RMSEA:

Root mean square error of approximation

SEM:

Structural equation model

SR:

Soil respiration

TN:

Total nitrogen

UPGMA:

Unweighted pair-group method with arithmetic

References

  • An J, Liu C, Wang Q, Yao M, Rui J, Zhang S, Li X (2019) Soil bacterial community structure in Chinese wetlands. Geoderma 337:290–299

    Article  Google Scholar 

  • Austin EE, Castro HF, Sides KE, Schadt CW, Classen AT (2009) Assessment of 10 years of CO2 fumigation on soil microbial communities and function in a sweetgum plantation. Soil Biol Biochem 41:514–520

    Article  CAS  Google Scholar 

  • Bais H, Weir T, Perry L, Gilroy S, Vivanco J (2006) The role of root exudatesin rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • BassiriRad H, Reynolds JF, Virginia RA, Brunelle MH (1997) Growth and root NO3- and PO43- uptake capacity of three desert species in response to atmospheric CO2 enrichment. Aust J Plant Physiol 24:353–358

    Google Scholar 

  • Bernhardt ES, Barber JJ, Pippen JS, Taneva L, Andrews JA, Schlesinger WH (2006) Long-term Effects of Free Air CO2 Enrichment (FACE) on soil respiration. Biogeochemistry 77:91–116

    Article  Google Scholar 

  • Blagodatskaya E, Blagodatsky S, Dorodnikov M, Kuzyakov Y (2010) Elevated atmospheric CO2 increases microbial growth rates in soil: results of three CO2 enrichment experiments. Glob Chang Biol 16:836–848

    Article  Google Scholar 

  • Blagodatskaya E, Yuyukina T, Blagodatsky S, Kuzyakov Y (2011) Three-source-partitioning of microbial biomass and of CO2 efflux from soil to evaluate mechanisms of priming effects. Soil Biol Biochem 43:778–786

    Article  CAS  Google Scholar 

  • Boer H, Lammertsma E, Wagner-Cremer F, Dilcher D, Wassen M, Dekker S (2011) Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO2. Proc Natl Acad Sci USA 108:4041–4046

    Article  PubMed  PubMed Central  Google Scholar 

  • Crous K, Campany C, López R, Cano F, Ellsworth D (2020) Canopy position affects photosynthesis and anatomy in mature Eucalyptus trees in elevated CO2. Tree Physiol 41:206–222

  • Dai Z, Wu Z, Hang S, Zhu W, Wu G (2015) Amino acid metabolism in intestinal bacteria and its potential implications for mammalian reproduction. Mol Human Reprod 21:389–409

    Article  CAS  Google Scholar 

  • Delgado-Baquerizo M, Eldridge DJ (2019) Cross-biome drivers of soil bacterial alpha diversity on a worldwide scale. Ecosystems 22:1–12

    Article  Google Scholar 

  • Deng Y, He Z, Xu M, Qin Y, Van Nostrand J, Wu L, Roe B, Wiley G, Hobbie S, Reich P, Zhou J (2012) Elevated carbon dioxide alters the structure of soil microbial communities. Appl Environ Microbiol 78:2991–2995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dijkstra F, Pendall E, Mosier A, King J, Milchunas D, Morgan J (2008) Long-term enhancement of N availability and plant growth under elevated CO2 in a semi-arid grassland. Funct Ecol 22:975–982

    Article  Google Scholar 

  • Douglas G, Vincent M, Jesse Z, Svetlana Y, James B, Christopher T, Curtis H, Morgan L (2019) Picrust2: An Improved and Extensible Approach for Metagenome Inference. bioRxiv 672295

  • Dusenge ME, Duarte A, Way D (2018) Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol 221:32–49

  • Evans C (2005) Modelling the effects of climate change on an acidic upland stream. Biogeochemistry 74:21–46

    Article  Google Scholar 

  • Finlay BJ, Maberly SC, Cooper JI (1997) Microbial Diversity and Ecosystem Function. Oikos 80:209–213

    Article  Google Scholar 

  • Freedman Z, Zak D (2015) Soil bacterial communities are shaped by temporal and environmental filtering: Evidence from a long-term chronosequence. Environ Microbiol 17:3208–3218

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390

    Article  CAS  PubMed  Google Scholar 

  • George P, Lallias D, Creer S, Seaton FM, Kenny JG, Eccles RM, Griffiths R, Lebron IA, Emmett B, Robinson D, Jones D (2019) Divergent national-scale trends of microbial and animal biodiversity revealed across diverse temperate soil ecosystems. Nat Commun 10:1107

    Article  PubMed  PubMed Central  Google Scholar 

  • Gray GM (2004) Carbohydrate digestion and absorption. Encyclopedia of Gastroenterol 58:275–278

    Google Scholar 

  • Groves A, Brudvig L (2018) Inter-annual variation in precipitation and other planting conditions impacts seedling establishment in sown plant communities: Year effects on sown communities. Restor Ecol 27:128–137

    Article  Google Scholar 

  • Gschwendtner S, Leberecht M, Engel M, Kublik S, Dannenmann M, Polle A, Schloter M (2014) Effects of elevated atmospheric CO2 on microbial community structure at the plant-soil interface of young beech trees (Fagus sylvatica L.) grown at two sites with contrasting climatic conditions. Microb Ecol 69:867–878

    Article  PubMed  Google Scholar 

  • He Z, Deng Y, Xu M, Li J, Liang J, Xiong J, Yu H, Wu B, Wu L, Xue K, Shi S, Carrillo Y, Van Nostrand JD, Hobbie SE, Reich PB, Schadt CW, Kent AD, Pendall E, Wallenstein M, Luo Y, Yan Q, Zhou J (2020) Microbial functional genes commonly respond to elevated carbon dioxide. Environ Int 144:106068–106068

    Article  CAS  PubMed  Google Scholar 

  • Horz HP, Barbrook A, Field C, Bohannan B (2004) Ammonia-oxidizing bacteria respond to multifactorial global change. Proc Natl Acad Sci USA 101:15136–15141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu L, Bentler P (1999) Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct Equ Modeling 6:1–55

    Article  Google Scholar 

  • Hug L, Castelle C, Wrighton K, Thomas B, Sharon I, Frischkorn K, Williams K, Tringe S, Banfield J (2013) Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome 1:22

    Article  PubMed  PubMed Central  Google Scholar 

  • IPCC (2014) Climate Change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, pp 151

  • Jansson J, Hofmockel K (2018) The soil microbiome-from metagenomics to metaphenomics. Curr Opin Microbiol 43:162–168

    Article  CAS  PubMed  Google Scholar 

  • Jianbo W, Tingcheng Z, Hongwei N, Haixiu Z, Xiaoling F, Jifeng W (2013) Effects of elevated CO2 and nitrogen deposition on ecosystem carbon fluxes on the Sanjiang plain wetland in Northeast China. PLoS One 8:e66563

    Article  Google Scholar 

  • Jiang D, Chen L, Xia N, Norgbey E, Koomson DA, Darkwah WK (2020) Elevated atmospheric CO2 impact on carbon and nitrogen transformations and microbial community in replicated wetland. Ecol Process 9:57

    Article  Google Scholar 

  • Jin J, Wood J, Franks A, Armstrong R, Tang CX (2020) Long-term CO2 enrichment alters the diversity and function of the microbial community in soils with high organic carbon. Soil Biol Biochem 144:9

    Article  Google Scholar 

  • Johansson K, El-Soda M, Pagel E, Meyer R, Tõldsepp K, Nilsson A, Brosche M, Kollist H, Uddling J, Andersson M (2020) Genetic controls of short- and long-term stomatal CO2 responses in Arabidopsis thaliana. Ann Bot 126:179–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang H, Freeman C, Ashendon TW (2001) Effects of elevated CO2 on fen peat biogeochemistry. Sci Total Environ 279:45–50

    Article  CAS  PubMed  Google Scholar 

  • Kang H, Kim S-Y, Fenner N, Freeman C (2005) Shifts of soil enzyme activities in wetlands exposed to elevated CO2. Sci Total Environ 337:207–212

    Article  CAS  PubMed  Google Scholar 

  • Kang H, Yu W, Dutta S, Gao H (2021) Soil microbial community composition and function are closely associated with soil organic matter chemistry along a latitudinal gradient. Geoderma 383:114744

    Article  CAS  Google Scholar 

  • Kao-Kniffin J, Balser TC (2007) Elevated CO2 differentially alters belowground plant and soil microbial community structure in reed canary grass-invaded experimental wetlands. Soil Biol Biochem 39:517–525

    Article  CAS  Google Scholar 

  • Kim H-Y, Lieffering M, Kobayashi K, Okada M, Miura S (2003) Seasonal changes in the effects of elevated CO2 on rice at three levels of nitrogen supply: A free air CO2 enrichment (FACE) experiment. Glob Chang Biol 9:826–837

    Article  Google Scholar 

  • Kourtev PS, Ehrenfeld JG, Häggblom M (2003) Experimental Analysis of the Effect of Exotic and Native Plant Species on the Structure and Function of Soil Microbial Communities. Soil Biol Biochem 35:895–905

    Article  CAS  Google Scholar 

  • Lammel D, Barth G, Ovaskainen O, Cruz L, Zanatta J, Ryo M, Souza E, Pedrosa F (2018) Direct and indirect effects of a pH gradient bring insights into the mechanisms driving prokaryotic community structures. Microbiome 6:106

    Article  PubMed  PubMed Central  Google Scholar 

  • Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40:2407–2415

    Article  CAS  Google Scholar 

  • Lee SH, Megonigal PJ, Langley AJ, Kang H (2017) Elevated CO2 and nitrogen addition affect the microbial abundance but not the community structure in salt marsh ecosystem. Appl Soil Ecol 117–118:129–136

    Article  Google Scholar 

  • Li X, Han S, Guo Z, Shao D, Xin L (2010) Changes in soil microbial biomass carbon and enzyme activities under elevated CO2 affect fine root decomposition processes in a Mongolian oak ecosystem. Soil Biol Biochem 42:1101–1107

    Article  CAS  Google Scholar 

  • Li X, Hou L, Liu M, Zheng Y, Yin G, Lin X, Cheng L, Li Y, Hu X (2015) Evidence of Nitrogen Loss from Anaerobic Ammonium Oxidation Coupled with Ferric Iron Reduction in an Intertidal Wetland. Environ Sci Technol 49:11560–115698

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Yang X, Wang L, Fan X, Zhang X, Xu D, Ye N (2020) Different physiological and molecular responses of the green algae Chlorella variabilis to long-term and short-term elevated CO2. J Appl Phycol 32:951–966

    Article  CAS  Google Scholar 

  • Ling L, Li X, Wang K, Cai M, Jiang Y, Cao C (2019) Carbon and nitrogen partitioning of transgenic rice T2A–1 ( Cry2A *) with different nitrogen treatments. Sci Rep 9:5351

    Article  PubMed  PubMed Central  Google Scholar 

  • Long S, Ainsworth E, Rogers A, Ort D (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628

    Article  CAS  PubMed  Google Scholar 

  • Lozupone C, Knight R (2006) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    Article  Google Scholar 

  • Lu R (1999) Soil and agro-chemical analytical methods. China Agricultural Science and Technology Press Beijing

  • Ma J, Luo Z, Chen F, Chen R, Zhu Q, Zhang S (2019) Impacts of elevated CO2 levels on the soil bacterial community in a natural CO2-enhanced oil recovery area. Diversity 11:77

    Article  CAS  Google Scholar 

  • Miao S, Qiao Y, Jin J, Wang Y, Tang C (2020) Greater variation of bacterial community structure in soybean than maize grown Mollisol soils in responses to seven-year elevated CO2 and temperature. Sci Total Environ 764:142836

    Article  PubMed  Google Scholar 

  • Morris C (2015) Multivariate Analysis of Ecological Data Using Canoco 5, 2nd Edition. Ecology 32:1–2

    Google Scholar 

  • Norby R (1994) Issues and perspectives for investigating responses to elevated atmospheric carbon dioxide. Plant Soil 165:9–20

    Article  CAS  Google Scholar 

  • Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62:142–160

    Article  CAS  PubMed  Google Scholar 

  • Rayment G, Higginson F (1992) The Australian Handbook of Soil and Water Chemical Methods. Section, 63. Inkata Press Pty Ltd, Melbourne

  • Reich P, Hobbie S, Lee T, Pastore M (2018) Unexpected reversal of C3 versus C4 grass response to elevated CO2 during a 20-year field experiment. Science 360:317–320

    Article  CAS  PubMed  Google Scholar 

  • Rengel Z (2011) Soil pH, soil health and climate change. Springer, Heidelberg, pp 69–85

    Book  Google Scholar 

  • Reth S, Reichstein M, Falge E (2005) The effect of soil water content, soil temperature, soil pH-value and the root mass on soil CO2 efflux- A modified model. Plant Soil 268:21–33

    Article  CAS  Google Scholar 

  • Ross DJ, Newton P, Tate KR, Luo D (2013) Impact of a low level of CO2 enrichment on soil carbon and nitrogen pools and mineralization rates over ten years in a seasonally dry, grazed pasture. Soil Biol Biochem 58:265–274

    Article  CAS  Google Scholar 

  • Röske K, Sachse R, Scheerer C, Röske I (2012) Microbial diversity and composition of the sediment in the drinking water reservoir Saidenbach (Saxonia Germany). Syst Appl Microbiol 35(1):35–44 

  • Rousk J, Brookes P, Bååth E (2010) The microbial PLFA composition as affected by pH in an arable. Soil Biol Biochem 42:516–520

    Article  CAS  Google Scholar 

  • Sage E, Heisler-White J, Morgan J, Pendall E, Williams DG (2020) Climate warming alters photosynthetic responses to elevated CO2 in prairie plants. Am J Bot 107:1238–1252

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Carrillo S, Álvarez-Cobelas M, Angeler D, Serrano-Grijalva L, Sánchez-Andrés R, Cirujano S, Schmid T (2017) Elevated atmospheric CO2 increases root exudation of carbon in wetlands: results from the first free-air CO2 enrichment facility (FACE) in a marshland. Ecosystems 21:852–867

    Article  Google Scholar 

  • Sarremejane R, Mykrä H, Huttunen KL, Mustonen KR, Marttila H, Paavola R, Sippel K, Veijalainen N, Muotka T (2018) Climate-driven hydrological variability determines inter-annual changes in stream invertebrate community assembly. Oikos 127:1586–1595

    Article  Google Scholar 

  • Sayer E, Oliver A, Fridley J, Askew A, Mills R, Grime J (2017) Links between soil microbial communities and plant traits in a species-rich grassland under long-term climate change. Ecol Evol 7:855–862

    Article  PubMed  PubMed Central  Google Scholar 

  • Shanker A (2020) Elevated CO2 and Water Stress in Combination in Plants: Vanguards for Adaptation to Changing Climate

  • Smit E, Leeflang P, Gommans S, Broek J, Mil S, Wernars K (2001) Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Appl Environ Microbiol 67:2284–2291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song S, Zhang C, Gao Y, Zhu X, Wang R, Wang M, Zheng Y, Hou L, Liu M, Wu D (2020) Responses of wetland soil bacterial community and edaphic factors to two-year experimental warming and Spartina alterniflora invasion in Chongming Island. J Clean Prod 250:119502

    Article  CAS  Google Scholar 

  • Staley C, Gould T, Wang P, Phillips J, Cotner J, Sadowsky M (2014) Core functional traits of bacterial communities in the upper mississippi river show limited variation in response to land cover. Front Microbio 5:414

    Article  Google Scholar 

  • Stuble K, Fick S, Young T (2017) Every restoration is unique: testing year effects and site effects as drivers of initial restoration trajectories. J Appl Ecol 54:1051–1057

    Article  Google Scholar 

  • R Development Core Team, 2014. R: A language and environment for statistical computing. Vienna, 644 Austria: R Foundation for Statistical Computing. Available: http://www.R-project.org.

  • Thakur M, Geisen S (2019) Trophic regulations of the soil microbiome. Trends Microbiol 27:771–780

    Article  CAS  PubMed  Google Scholar 

  • Tu Q, Zhou X, He Z, Xue K, Wu L, Reich P, Hobbie S, Zhou J (2015) The diversity and co-occurrence patterns of N2 fixing communities in a CO2 enriched grassland ecosystem. Microb Ecol 71:604–615

    Article  PubMed  Google Scholar 

  • Usyskin-Tonne A, Hadar Y, Yermiyahu U, Minz D (2020) Elevated CO2 and nitrate levels increase wheat root-associated bacterial abundance and impact rhizosphere microbial community composition and function. ISME J 15:1073–1084

  • Vaughn K, Young T (2010) Contingent conclusions: Year of initiation influences ecological field experiments, but temporal replication is rare. Restor Ecol 18:59–64

    Article  Google Scholar 

  • Vries F, Shade A (2013) Controls on soil microbial community stability under climate change. Front Microbiol 4:265

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Zhu T, Ni H, Zhong H, Fu X, Wang J (2013) Effects of elevated CO2 and nitrogen deposition on ecosystem carbon fluxes on the Sanjiang plain wetland in Northeast China. PLOS One 8:e66563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Li R, Wan Y, Li Y, Cai W, Guo C, Qin X, Song C, Wilkes A (2021) Air warming and CO2 enrichment cause more ammonia volatilization from rice paddies: An OTC field study. Sci Total Environ 752:142071

    Article  CAS  PubMed  Google Scholar 

  • Werner C, Stuble K, Groves A, Young T (2020) Year effects: Inter‐annual variation as a driver of community assembly dynamics. Ecology 101:e03104

  • Xia W, Jia Z, Bowatte S, Newton PCD (2017) Impact of elevated atmospheric CO2 on soil bacteria community in a grazed pasture after 12-year enrichment. Geoderma 285:19–26

    Article  CAS  Google Scholar 

  • Xu Q, Wang X, Tang C (2018) The effects of elevated CO2 and nitrogen availability on rhizosphere priming of soil organic matter under wheat and white lupin. Plant Soil 425:375–387

    Article  CAS  Google Scholar 

  • Xu Z, Jiang Y, Jia B, Zhou G (2016) Elevated CO2 response of stomata and its dependence on environmental factors. Front Plant Sci 7:657

  • Yang SH, Zheng QS, Yuan MT, Shi Z, Chiariello NR, Docherty KM, Dong SK, Field CB, Gu YF, Gutknecht J, Hungate BA, Le Roux X, Ma XY, Niboyet A, Yuan T, Zhou JZ, Yang YF (2019) Long-term elevated CO2 shifts composition of soil microbial communities in a Californian annual grassland, reducing growth and N utilization potentials. Sci Total Environ 652:1474–1481

    Article  PubMed  Google Scholar 

  • Yang X, Zhu K, Loik ME, Sun W (2021) Differential responses of soil bacteria and fungi to altered precipitation in a meadow steppe. Geoderma 384:114812

    Article  CAS  Google Scholar 

  • Yu T, Chen Y (2019) Effects of elevated carbon dioxide on environmental microbes and its mechanisms: A review. Sci Total Environ 655:865–879

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Li Y, Wang G, Liu J, Liu J, Liu X, Herbert S, Jin J (2016) Effectiveness of elevated CO2 mediating bacterial communities in the soybean rhizosphere depends on genotypes. Agr Ecosyst Environ 231:229–232

    Article  CAS  Google Scholar 

  • Yu H, He Z, Wang A, Xie J, Wu L, Van Nostrand J, Jin D, Shao Z, Schadt C, Zhou J, Deng Y (2017) Divergent responses of forest soil microbial communities under elevated CO2 in different depths of upper soil layers. Appl Environ Microbiol 84:e01694-e1617

    PubMed  PubMed Central  Google Scholar 

  • Yu H, Deng Y, He Z, Van Nostrand J, Wang S, Jin D, Wang A, Wu L, Wang D, Tai X, Zhou J (2018) Elevated CO2 and warming altered grassland microbial communities in soil top-layers. Front Microbiol 9:1790

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng Q, An S, Liu Y (2017) Soil bacterial community response to vegetation succession after fencing in the grassland of China. Sci Total Environ 609:2–10

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Liu Y, Chen Y, Zhang J, Li H, Wang L, Chen Q (2020) Short-term warming shifts microbial nutrient limitation without changing the bacterial community structure in an alpine timberline of the eastern Tibetan Plateau. Geoderma 360:113985

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Heilongjiang Postdoctoral Science Foundation (LBH-Z20107, LBH-Z19102), the Natural Sciences Foundation of Heilongjiang Province (LH2021C004, LH2021C080), the Outstanding Youth Fund of Heilongjiang Academy of Sciences (CXJQ2020ZR03, CXJQ2020ZR01), the Fundamental Research Funds for the Central Universities (2572018BE05) and Institute of basic applied technology, Heilongjiang province (ZNBZ2019ZR05). We thank the editor and anonymous reviewers for helpful comments on previous versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongfei Zou.

Ethics declarations

Conflict of interests

Authors declare no conflict of interests.

Additional information

Responsible Editor: Paul L.E. Bodelier.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 263 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Wang, H., Xu, N. et al. Effects 10 years elevated atmospheric CO2 on soil bacterial community structure in Sanjiang Plain, Northeastern China. Plant Soil 471, 73–87 (2022). https://doi.org/10.1007/s11104-021-05115-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-05115-4

Keywords

Navigation