Skip to main content
Log in

Correlation between reduced dielectric loss and charge migration kinetics in NdFeO3-modified Ba0.7Sr0.3TiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 24 September 2021

This article has been updated

Abstract

The present study demonstrates the reduction in the dielectric loss at room temperature from 0.149 to 0.027 in the composite of (NdFeO3)0.1−(Ba0.7Sr0.3TiO3)0.9 as compared to the undoped Ba0.7Sr0.3TiO3 and correlates with the charge compensation due to the ionic substitutions for both A site (NdBa) and B (FeTi) site generated excess electrons, localized hole states and robust oxygen vacancies (\({V}_{O}\)) along with different cationic oxidation states. The \({V}_{O}\) mediated F center charge transfer mechanism i.e., bound magnetic polaronic behaviour and defect complex generated between acceptors and ionized \({V}_{O}\) reduce electrical conductivity and loss factor. The presence of weak ferromagnetism in the M-H loop reconfirms the F center exchange mechanism in mixed phase symmetry. The activation energy calculated from impedance spectroscopy, electrical modulus and electrical conductivity analysis supports the presence of doubly ionized \({V}_{O}\). Further, density functional theory based first principle calculation manifests that the impurity induced depopulation of valence band edge electrons into a single spin up channel which distorts TiO6 octahedra with fluctuating bond length and Ti 3d eg orbital splitting observed in decomposed density of states for accommodating excess electrons. These trapped and accommodated electrons reduce the effective electron concentration which in turn decreases the electrical conductivity and loss factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Change history

References:

  1. N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada, and S. Streiffer, J. Appl. Phys. 100, (2006).

  2. M.D. Maeder, D. Damjanovic, N. Setter, J. Electroceram. 13, 385 (2004)

    Article  CAS  Google Scholar 

  3. H. Inoue, H. Yoon, T.A. Merz, A.G. Swartz, S.S. Hong, Y. Hikita, H.Y. Hwang, Appl. Phys. Lett. 114, 231605 (2019)

    Article  Google Scholar 

  4. T. Yajima, M. Minohara, C. Bell, H.Y. Hwang, Y. Hikita, Appl. Phys. Lett. 113, 221603 (2018)

    Article  Google Scholar 

  5. A. Kaur, A. Singh, L. Singh, S.K. Mishra, P.D. Babu, K. Asokan, S. Kumar, C.L. Chen, K.S. Yang, D.H. Wei, RSC Adv. 6, 112363 (2016)

    Article  CAS  Google Scholar 

  6. L. Curecheriu, M.T. Buscaglia, V. Buscaglia, Z. Zhao, L. Mitoseriu, Appl. Phys. Lett. 97, 1 (2010)

    Article  Google Scholar 

  7. F. A. Ismail, R. Aina, M. Osman, M. S. Idris, 090005, (2016).

  8. S. Choudhury, S. Akter, M. Rahman, A. Bhuiyan, S. Rahman, N. Khatun, M. Hossain, J. Bangladesh Acad. Sci. 32, (1970).

  9. Y.J. Kim, J.W. Hyun, Appl. Sci. Converg. Technol. 26, 143 (2017)

    Article  Google Scholar 

  10. Z. Li, H. Fan, J. Phys. D Appl. Phys. 42, 075415 (2009)

    Article  Google Scholar 

  11. M. Arshad, H. Du, M.S. Javed, A. Maqsood, I. Ashraf, S. Hussain, W. Ma, H. Ran, Ceram. Int. 46, 2238 (2020)

    Article  CAS  Google Scholar 

  12. S.B. Herner, F.A. Selmi, V.V. Varadan, V.K. Varadan, Mater. Lett. 15, 317 (1993)

    Article  CAS  Google Scholar 

  13. Z.Q. Wang, Y.S. Lan, Z.Y. Zeng, X.R. Chen, Q.F. Chen, Solid State Commun. 288, 10 (2019)

    Article  CAS  Google Scholar 

  14. A. Singh, A. Gupta, R. Chatterjee, Appl. Phys. Lett. 93, 2006 (2008)

    Google Scholar 

  15. T. Murtaza, M.S. Khan, J. Ali, T. Hussain, K. Asokan, J. Mater. Sci. Mater. Electron. 29, 18573 (2018)

    Article  CAS  Google Scholar 

  16. I. Sosnowsk, E. Steichelea, A. Hewatc, Phys. B+ C 136, 394 (1986)

    Article  Google Scholar 

  17. K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T.A. Arias, R.G. Hennig, J. Chem. Phys. 140, 84106 (2014)

    Article  Google Scholar 

  18. F. Han, Problems in Solid State Physics with Solutions (World Scientific Publishing Company, 2011).

  19. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  20. G. Kresse, J. Furthmüller, Phys. Rev. B–Condens. Matter Mater. Phys. 54, 11169 (1996)

    Article  CAS  Google Scholar 

  21. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  Google Scholar 

  22. A.I. Liechtenstein, V.I. Anisimov, J. Zaanen, Phys. Rev. B 52, R5467 (1995)

    Article  CAS  Google Scholar 

  23. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Phys. Rev. B 57, 1505 (1998)

    Article  CAS  Google Scholar 

  24. V. Kumar, A. Bhogra, M. Bala, S.C. Haw, C.L. Chen, C.L. Dong, K. Asokan, S. Annapoorni, Phys. Rev. B 103, 24104 (2021)

    Article  CAS  Google Scholar 

  25. N.A. Rejab, S. Sreekantan, K. Abd Razak, Z.A. Ahmad, J. Mater. Sci. Mater. Electron. 22, 167 (2011)

    Article  CAS  Google Scholar 

  26. Z. Yao, H. Liu, Y. Liu, Z. Wu, Z. Shen, Y. Liu, M. Cao, Mater. Chem. Phys. 109, 475 (2008)

    Article  CAS  Google Scholar 

  27. N. V Dang, T. D. Thanh, L. V Hong, V. D. Lam, T. Phan, J. Appl. Phys. 110, (2011).

  28. S. Rajan, P.M.M. Gazzali, G. Chandrasekaran, Spectrochim Acta Part A Mol. Biomol. Spectrosc. 171, 80 (2017)

    Article  CAS  Google Scholar 

  29. N.V. Dang, N.T. Dung, P.T. Phong, I.-J. Lee, Phys. B Condens. Matter 457, 103 (2015)

    Article  CAS  Google Scholar 

  30. A. El Ghandouri, S. Sayouri, T. Lamcharfi, L. Hajji, J. Mater. Enviorn. Sci. 8, 4945 (2017)

    Google Scholar 

  31. R.S. Katiyar, M. Jain, Y.U.I. Yuzyuk, Ferroelectrics 303, 101 (2004)

    Article  CAS  Google Scholar 

  32. L. Huang, Z. Chen, J. D. Wilson, S. Banerjee, R. D. Robinson, I. P. Herman, R. Laibowitz, and S. O’Brien, J. Appl. Phys. 100, (2006).

  33. A. Kaur, L. Singh, K. Asokan, Ceram. Int. 44, 3751 (2018)

    Article  CAS  Google Scholar 

  34. A. Shukla, R.N.P. Choudhary, Phys. B Condens. Matter 406, 2492 (2011)

    Article  CAS  Google Scholar 

  35. L. Lv, J.P. Zhou, Q. Liu, G. Zhu, X.Z. Chen, X.B. Bian, P. Liu, Phys. E Low-Dimens. Syst. Nanostr. 43, 1798 (2011)

    Article  CAS  Google Scholar 

  36. T. Badapanda, S. Sarangi, S. Parida, B. Behera, B. Ojha, S. Anwar, J. Mater. Sci. Mater. Electron. 26, 3069 (2015)

    Article  CAS  Google Scholar 

  37. Y.C. Huang, S.S. Chen, W.H. Tuan, J. Am. Ceram. Soc. 90, 1438 (2007)

    Article  CAS  Google Scholar 

  38. P.P. Khirade, S.D. Birajdar, A.V. Raut, K.M. Jadhav, Ceram. Int. 42, 12441 (2016)

    Article  CAS  Google Scholar 

  39. V.A. Khomchenko, D.A. Kiselev, J.M. Vieira, A.L. Kholkin, M.A. Sá, Y.G. Pogorelov, Appl. Phys. Lett. 90, 242901 (2007)

    Article  Google Scholar 

  40. J.M.D. Coey, A.P. Douvalis, C.B. Fitzgerald, M. Venkatesan, Appl. Phys. Lett. 84, 1332 (2004)

    Article  CAS  Google Scholar 

  41. B. Zhang, Z. Quan, T. Zhang, T. Guo, and S. Mo, J. Appl. Phys. 101, (2007).

  42. B.S. Norgren, M.A.J. Somers, J.H.W. De Wit, Surf. Interface Anal. 21, 378 (1994)

    Article  CAS  Google Scholar 

  43. F. Gheorghiu, M. Simenas, C.E. Ciomaga, M. Airimioaei, V. Kalendra, J. Banys, M. Dobromir, S. Tascu, L. Mitoseriu, Ceram. Int. 43, 9998 (2017)

    Article  CAS  Google Scholar 

  44. C. Xu, Y. Xia, Z. Liu, X. Meng, J. Phys. D. Appl. Phys. 42, 85302 (2009)

    Article  Google Scholar 

  45. Y. Shuai, S. Zhou, D. Bürger, H. Reuther, I. Skorupa, V. John, M. Helm, H. Schmidt, J. Appl. Phys. 109, (2011).

  46. Y. Lv, W. Yao, X. Ma, C. Pan, R. Zong, Y. Zhu, Catal. Sci. Technol. 3, 3136 (2013)

    Article  CAS  Google Scholar 

  47. H. Tan, Z. Zhao, W. Zhu, E.N. Coker, B. Li, M. Zheng, W. Yu, H. Fan, Z. Sun, A.C.S. Appl, Mater. Interfaces 6, 19184 (2014)

    Article  CAS  Google Scholar 

  48. Q. Ke, X. Lou, Y. Wang, J. Wang, Phys. Rev. B 82, 24102 (2010)

    Article  Google Scholar 

  49. T. Chakraborty, S. Ray, M. Itoh, Phys. Rev. B 83, 144407 (2011)

    Article  Google Scholar 

  50. R.V.K. Mangalam, N. Ray, U.V. Waghmare, A. Sundaresan, C.N.R. Rao, Solid State Commun. 149, 1 (2009)

    Article  CAS  Google Scholar 

  51. L. Fang, F. Xiang, W. Liao, L. Liu, H. Zhang, X. Kuang, Mater. Chem. Phys. 143, 552 (2014)

    Article  CAS  Google Scholar 

  52. R. Tang, C. Jiang, W. Qian, J. Jian, X. Zhang, H. Wang, H. Yang, Sci. Rep. 5, 13645 (2015)

    Article  CAS  Google Scholar 

  53. A. K. Jonscher, Dielectric Relaxation in Solids (Dielectrics Press, 1999).

  54. S. Thakur, R. Rai, I. Bdikin, M.A. Valente, Mater. Res. 19, 1 (2016)

    Article  CAS  Google Scholar 

  55. R. Tang, C. Jiang, W. Qian, J. Jian, X. Zhang, H. Wang, H. Yang, Sci. Rep. Nat. Publ. Gr. 5:13645, 1 (2015).

  56. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  CAS  Google Scholar 

  57. M.R. Díaz-Guillén, J.A. Díaz-Guillén, A.F. Fuentes, J. Santamaría, C. León, Phys. Rev. B Condens. Matter Mater. Phys. 82, 1 (2010)

    Article  Google Scholar 

  58. L. Zhang, X. Ren, Phys. Rev. B 73, 94121 (2006)

    Article  Google Scholar 

  59. G.D. Hu, S.H. Fan, C.H. Yang, W.B. Wu, Appl. Phys. Lett. 92, 192905 (2008)

    Article  Google Scholar 

  60. J.P. Wright, J.P. Attfield, P.G. Radaelli, Phys. Rev. B 66, 214422 (2002)

    Article  Google Scholar 

  61. N. Rezlescu, E. Rezlescu, Solid State Commun. 14, 69 (1974)

    Article  CAS  Google Scholar 

  62. S. Chattopadhyay, P. Ayyub, V.R. Palkar, M. Multani, Phys. Rev. B 52, 13177 (1995)

    Article  CAS  Google Scholar 

  63. L. He, D. Vanderbilt, Phys. Rev. B 68, 134103 (2003)

    Article  Google Scholar 

  64. F. Xu, S. Trolier-McKinstry, W. Ren, B. Xu, Z.-L. Xie, K.J. Hemker, J. Appl. Phys. 89, 1336 (2001)

    Article  CAS  Google Scholar 

  65. G. Viola, K. Boon Chong, F. Guiu, M. John Reece, J. Appl. Phys. 115, 34106 (2014)

    Article  Google Scholar 

  66. Y. Tan, J. Zhang, Y. Wu, C. Wang, V. Koval, B. Shi, H. Ye, R. McKinnon, G. Viola, H. Yan, Sci. Rep. 5, 9953 (2015)

    Article  CAS  Google Scholar 

  67. D. Damjanovic, Hysteresis in Piezoelectric and Ferroelectric Materials (Academic Press, 2006).

  68. Q.M. Zhang, J. Zhao, K. Uchino, J. Zheng, J. Mater. Res. 12, 226 (1997)

    Article  CAS  Google Scholar 

  69. S. Singh, O.P. Thakur, C. Prakash, J. Phys. D. Appl. Phys. 38, 1621 (2005)

    Article  CAS  Google Scholar 

  70. J. Bao, J. Zhou, Z. Yue, L. Li, Z. Gui, J. Magn. Magn. Mater. 250, 131 (2002)

    Article  CAS  Google Scholar 

  71. H. Zhang, J. Zhou, Y. Wang, L. Li, Z. Yue, Z. Gui, Mater. Lett. 55, 351 (2002)

    Article  CAS  Google Scholar 

  72. S. Saha, T.P. Sinha, Phys. Rev. B 65, 134103 (2002)

    Article  Google Scholar 

  73. J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Phys. Rev. B Condens. Matter Mater. Phys. 70, 1 (2004)

    Google Scholar 

  74. Q. Ke, X. Lou, Y. Wang, J. Wang, Phys. Rev. B Condens. Matter Mater. Phys. 82, 1 (2010)

    Google Scholar 

  75. K. Verma, S. Sharma, Phys. Status Solidi Basic Res. 249, 209 (2012)

    Article  CAS  Google Scholar 

  76. M. Belal Hossen, A.K.M. Akther Hossain, Adv. Mater. Lett. 6, 810 (2015)

    Article  Google Scholar 

  77. A. Dutta, T.P. Sinha, S. Shannigrahi, Phys. Rev B 76, 155113 (2007)

    Article  Google Scholar 

  78. N. Ortega, A. Kumar, P. Bhattacharya, S.B. Majumder, R.S. Katiyar, Phys. Rev. B 77, 014111 (2008)

    Article  Google Scholar 

  79. R. Kumari, N. Ahlawat, A. Agarwal, S. Sanghi, M. Sindhu, N. Ahlawat, J. Magn. Magn. Mater. 414, 1 (2016)

    Article  CAS  Google Scholar 

  80. R. Bergman, J. Appl. Phys. 88, 1356 (2000)

    Article  CAS  Google Scholar 

  81. O. Raymond, R. Font, N. Suárez-Almodovar, J. Portelles, J. M. Siqueiros, J. Appl. Phys. 97, (2005).

  82. T. Badapanda, V. Senthil, S.K. Rout, S. Panigrahi, T.P. Sinha, Mater. Chem. Phys. 133, 863 (2012)

    Article  CAS  Google Scholar 

  83. L. Zhang and Z. J. Tang, Phys. Rev. B - Condens. Matter Mater. Phys. 70, 1 (2004).

  84. B.H. Sohn, R.E. Cohen, G.C. Papaefthymiou, J. Magn. Magn. Mater. 182, 216 (1998)

    Article  CAS  Google Scholar 

  85. M.M. Gallego, A.R. West, J. Appl. Phys. 90, 394 (2001)

    Article  CAS  Google Scholar 

  86. A. K. Roy, A. Singh, K. Kumari, K. A. Nath, A. Prasad, and K. Prasad, Int. Sch. Reserach Netw. ISRN Ceram. 1 (2012).

  87. K. Funke, Prog. Solid State Chem. 22, 111 (1993)

    Article  CAS  Google Scholar 

  88. A.K. Behera, N.K. Mohanty, S.K. Satpathy, B. Behera, P. Nayak, Acta Metall. Sin. English Lett. 28, 847 (2015)

    Article  CAS  Google Scholar 

  89. S. Sahoo, P.K. Mahapatra, R.N.P. Choudhary, M.L. Nandagoswami, A. Kumar, Mater. Res. Express 3, 065017 (2016)

    Article  Google Scholar 

  90. J. Gebhardt, A.M. Rappe, Phys. Rev. B 98, 125202 (2018)

    Article  CAS  Google Scholar 

  91. J. Dho, X. Qi, H. Kim, J.L. MacManus-Driscoll, M.G. Blamire, Adv. Mater. 18, 1445 (2006)

    Article  CAS  Google Scholar 

  92. K. C. Kao, Dielectric Phenomena in Solids (2004).

  93. V.R. Mastelaro, P.P. Neves, S.R. De Lazaro, E. Longo, A. Michalowicz, J.A. Eiras, J. Appl. Phys. 99, 44104 (2006)

    Article  Google Scholar 

  94. N. Jiang, D. Su, J.C.H. Spence, Phys. Rev. B 76, 214117 (2007)

    Article  Google Scholar 

  95. T. Xu, T. Shimada, Y. Araki, J. Wang, T. Kitamura, Nano Lett. 16, 454 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to UGC-DAE Consortium for Scientific Research, Indore and IUAC New Delhi, India for providing research facilities. A. Kaur, gratefully acknowledges the University Grants Commission (UGC BSR) for her research fellowship and Dr. A. Das to Institute for Plasma Research (IPR) for providing post-doctoral fellowship. Authors D.S. and R.A. thanks Olle Engkvists Dtiftelse (198-0390), Carl Tryggers Stiftelse for Vetenskaplig Forskning (CTS: 18:4), and Swedish Research Council (VR-2016-06014) for financial support. SNIC and HPC2N are acknowledged for providing computing facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anumeet Kaur or Arkaprava Das.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 683 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, A., Singh, D., Das, A. et al. Correlation between reduced dielectric loss and charge migration kinetics in NdFeO3-modified Ba0.7Sr0.3TiO3 ceramics. J Mater Sci: Mater Electron 32, 24910–24929 (2021). https://doi.org/10.1007/s10854-021-06949-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06949-5

Navigation