Skip to main content
Log in

Impurity Systems in Condensed Helium-4

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We reviewed systems formed in liquid and solid helium-4 at high concentrations (1016 cm−3 and higher) of impurity particles. A new explanation for the reversible coagulation of fine hydrogen particles into big flakes observed upon the transition of liquid helium into the superfluid phase is proposed. The importance of nanoclusters presence in helium crystals doped with impurity particle for the metastability of icebergs is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P. Savich, A.I. Shalnikov, Coagulation of Fog in the Liquid Helium II. J. Phys. USSR 10, 299 (1946)

    Google Scholar 

  2. K.L. Chopra, J.B. Brown, Phys. Rev. 108, 157 (1957). https://doi.org/10.1103/PhysRev.108.157

    Article  ADS  Google Scholar 

  3. E.J. Yarmchuk, M.J.V. Gordon, R.E. Packard, Phys. Rev. Lett. 43, 214 (1979). https://doi.org/10.1103/PhysRevLett.43.214

    Article  ADS  Google Scholar 

  4. W. Guo, D. Jin, G.M. Seidel, H.J. Maris, Phys. Rev. B 79, 054515 (2009). https://doi.org/10.1103/PhysRevB.79.054515

    Article  ADS  Google Scholar 

  5. M. Murakarni, N. Ichikawa, Cryogenics 29, 438 (1989). https://doi.org/10.1016/0011-2275(89)90276-2

    Article  ADS  Google Scholar 

  6. E. Fonda, K.R. Sreenivasan, D.P. Lathrop, Rev. Sci. Instr. 87, 025106 (2016). https://doi.org/10.1063/1.4941337

    Article  ADS  Google Scholar 

  7. W.G. Rellergert, S.B. Cahn, A. Garvan, J.C. Hanson, W.H. Lippincott, J.A. Nikkel, D.N. McKinsey, Phys. Rev. Lett. 100, 025301 (2008). https://doi.org/10.1103/PhysRevLett.100.025301

    Article  ADS  Google Scholar 

  8. P. Moroshkin, K. Kono, Phys. Rev. B 101, 134520 (2020). https://doi.org/10.1103/PhysRevB.101.134520

    Article  ADS  Google Scholar 

  9. D.P. Meichle, D.P. Lathrop, Rev. Scient. Instr. 85, 073705 (2014). https://doi.org/10.1063/1.4886811

    Article  ADS  Google Scholar 

  10. S. Inui, M. Tsubota, P. Moroshkin, P. Leiderer, K. Kono, J. Low Temp. Phys. 196, 190 (2019). https://doi.org/10.1007/s10909-018-02116-z

    Article  ADS  Google Scholar 

  11. Y. Minowa, K. Kokado, S. Aoyagi, M. Ashida, Proc. SPIE. 11522, 115221B (2020). https://doi.org/10.1117/12.2573515

    Article  Google Scholar 

  12. G.P. Bewley, D.P. Lathrop, K.R. Sreenivasan, Nature 441, 588 (2006). https://doi.org/10.1038/441588a

    Article  ADS  Google Scholar 

  13. G.P. Bewley, M.S. Paoletti, K.R. Sreenivasan, D.P. Lathrop, Proc. Nat. Acad. Sci. USA 105, 13707 (2008). https://doi.org/10.1073/pnas.0806002105

    Article  ADS  Google Scholar 

  14. G.P. Bewley, Cryogenics 49, 549 (2009). https://doi.org/10.1016/j.cryogenics.2008.10.018

    Article  ADS  Google Scholar 

  15. E. Fonda, D.P. Meichle, N.T. Ouellette, S. Hormoz, D.P. Lathrop, Proc. Natl. Acad. Sci. USA 111, 4707 (2014). https://doi.org/10.1073/pnas.1312536110

    Article  ADS  Google Scholar 

  16. G.P. Bewley, K.R. Sreenivasan, J. Low Temp. Phys. 156, 84 (2009). https://doi.org/10.1007/s10909-009-9903-1

    Article  ADS  Google Scholar 

  17. M.S. Paoletti, R.B. Fiorito, K.R. Sreenivasan, D.P. Lathrop, J. Phys. Soc. Jpn. 77, 111007 (2008). https://doi.org/10.1143/JPSJ.77.111007

    Article  ADS  Google Scholar 

  18. T. Zhang, D. Celik, S.W. Van Sciver, J. Low Temp. Phys. 134, 985 (2004). https://doi.org/10.1023/B:JOLT.0000013213.61721.51

    Article  ADS  Google Scholar 

  19. G.P. Bewley, K.R. Sreenivasan, D.P. Lathrop, Exp. Fluids 44, 887 (2008). https://doi.org/10.1007/s00348-007-0444-6

    Article  Google Scholar 

  20. E. Varga, C.F. Barenghi, Y.A. Sergeev, L. Skrbek, J. Low Temp. Phys. 183, 215 (2016). https://doi.org/10.1007/s10909-015-1430-7

    Article  ADS  Google Scholar 

  21. I.A. Pshenichnyuk, New J. Phys. 19, 105007 (2017). https://doi.org/10.1088/1367-2630/aa8745

    Article  ADS  Google Scholar 

  22. A. Fujisaki, K. Sano, T. Kinoshita, Y. Takahashi, T. Yabuzaki, Phys. Rev. Lett. 71, 1039 (1993). https://doi.org/10.1103/PhysRevLett.71.1039

    Article  ADS  Google Scholar 

  23. P. Moroshkin, V. Lebedev, B. Grobety, C. Neururer, E.B. Gordon, A. Weis, Europhys. Lett. 90, 34002 (2010). https://doi.org/10.1209/0295-5075/90/34002

    Article  ADS  Google Scholar 

  24. E.B. Gordon, A.V. Karabulin, V.I. Matyushenko, V.D. Sizov, I.I. Khodos, J. Exp. Theor. Phys. 112, 1061 (2011). https://doi.org/10.1134/S1063776111040182

    Article  ADS  Google Scholar 

  25. A. Meraki, P.T. McColgan, P.M. Rentzepis, R.Z. Li, D.M. Lee, V.V. Khmelenko, Phys. Rev. B 95, 104502 (2017). https://doi.org/10.1103/PhysRevB.95.104502

    Article  ADS  Google Scholar 

  26. P.T. McColgan, S. Sheludiakov, P.M. Rentzepis, D.M. Lee, V.V. Khmelenko, Low Temp. Phys. 45, 310 (2019). https://doi.org/10.1063/1.5090088

    Article  ADS  Google Scholar 

  27. E.B. Gordon, A.A. Pelmenev, O.F. Pugachev, V.V. Khmelenko, JETP Lett. 37, 282 (1983)

    ADS  Google Scholar 

  28. S.I. Kiselev, V.V. Khmelenko, D.M. Lee, Phys. Rev. Lett. 89, 175301 (2002). https://doi.org/10.1103/PhysRevLett.89.175301

    Article  ADS  Google Scholar 

  29. R.E. Boltnev, E.P. Bernard, J. Jarvinen, I.N. Krushinskaya, V.V. Khmelenko, D.M. Lee, J. Low Temp. Phys. 158, 468 (2010). https://doi.org/10.1007/S10909-009-9961-4

    Article  ADS  Google Scholar 

  30. A. Meraki, P.T. McColgan, R.E. Boltnev, D.M. Lee, V.V. Khmelenko, J. Low Temp. Phys. 192, 224 (2018). https://doi.org/10.1007/s10909-018-1952-x

    Article  ADS  Google Scholar 

  31. V. Kiryukhin, B. Keimer, R.E. Boltnev, V.V. Khmelenko, E.B. Gordon, Phys. Rev. Lett. 79, 1774 (1997). https://doi.org/10.1103/PhysRevLett.79.1774

    Article  ADS  Google Scholar 

  32. N.V. Krainyukova, R.E. Boltnev, E.P. Bernard, V.V. Khmelenko, D.M. Lee, V. Kiryukhin, Phys. Rev. Lett. 109, 245505 (2012). https://doi.org/10.1103/PhysRevLett.109.245505

    Article  ADS  Google Scholar 

  33. L.P. Mezhov-Deglin, V.B. Efimov, A.V. Lokhov, E.V. Lychagin, A.Y. Muzychko, V.V. Nesvizhevskii, A.V. Strelkov, J. Low Temp. Phys. 148, 833 (2007). https://doi.org/10.1007/s10909-007-9460-4

    Article  ADS  Google Scholar 

  34. V.B. Efimov, L.P. Mezhov-Deglin, C.D. Dewhurst, A.V. Lokhov, V.V. Nesvizhevsky, Adv. High Energy Phys. 2015, 808212 (2015). https://doi.org/10.1155/2015/808212

    Article  Google Scholar 

  35. P.T. McColgan, A. Meraki, R.E. Boltnev, D.M. Lee, V.V. Khmelenko, J. Phys. Chem. A 121, 9045 (2017). https://doi.org/10.1021/acs.jpca.7b09661

    Article  Google Scholar 

  36. R.E. Boltnev, I.B. Bykhalo, I.N. Krushinskaya, A.A. Pelmenev, S. Mao, A. Meraki, P.T. McColgan, D.M. Lee, V.V. Khmelenko, Phys. Chem. Chem. Physics 18, 16013 (2016). https://doi.org/10.1039/c6cp01080f

    Article  Google Scholar 

  37. E.B. Gordon, L.P. Mezhov-Deglin, O.F. Pugachev, JETP Lett. 19, 63 (1974)

    ADS  Google Scholar 

  38. M. Himbert, A. Lezama, J. Dupont-Roc, J. Physique 46, 2009 (1985)

    Article  Google Scholar 

  39. H. Bauer, M. Beau, B. Friedl, C. Marchand, K. Miltner, H.J. Reyher, Phys. Lett. A 146, 134 (1990). https://doi.org/10.1016/0375-9601(90)90651-4

    Article  ADS  Google Scholar 

  40. M. Arndt, R. Dziewior, S. Kanorsky, A. Weis, T. Hänsch, Phys. B 98, 377 (1995). https://doi.org/10.1007/BF01338409

    Article  Google Scholar 

  41. L.P. Mezhov-Deglin, A.M. Kokotin, JETP Lett. 70, 756 (1999). https://doi.org/10.1134/1.568258

    Article  ADS  Google Scholar 

  42. R.E. Boltnev, V.M. Atrazhev, N. Bonifaci, I.B. Bykhalo, I.N. Krushinskaya, V.V. Khmelenko, D.M. Lee, S. Sheludiakov, A.A. Pelmenev, N. Sadhegi, Plasma Sources Sci. Technol. (2021). https://doi.org/10.1088/1361-6595/abefa9

    Article  Google Scholar 

  43. A. Golov, H. Ishimoto, J. Low Temp. Phys. 113, 957 (1998). https://doi.org/10.1023/A:1022583729253

    Article  ADS  Google Scholar 

  44. N. Bonifaci, F. Aitken, V.M. Atrazhev, S.L. Fiedler, J. Eloranta, Phys. Rev. A 85, 042706 (2012). https://doi.org/10.1103/PhysRevA.85.042706

    Article  ADS  Google Scholar 

  45. R.E. Boltnev, E.B. Gordon, V.V. Khmelenko, I.N. Krushinskaya, M.V. Martynenko, A.A. Pelmenev, E.A. Popov, D. Yu. Stolyarov, “Method for investigation of chemical reactions in quantum matrix of solidified helium.” Proceedings of the Second International Conference on Low Temperature Chemistry, University of Missouri-Kansas City, Missouri, USA, 4–9 August, 1996, pp 163–164.

  46. S. Bag, A. Baksi, D. Wang, R. Kruk, C. Benel, M.R. Chellalia, H. Hahn, Nanoscale Adv. 1, 4513 (2019). https://doi.org/10.1039/c9na00533a

    Article  ADS  Google Scholar 

  47. S. Mao, A. Meraki, R.E. Boltnev, V.V. Khmelenko, D.M. Lee, Phys. Rev. B 89, 144301 (2014). https://doi.org/10.1103/PhysRevB.89.144301

    Article  ADS  Google Scholar 

  48. V.V. Khmelenko, D.M. Lee, I.N. Krushinskaya, R.E. Boltnev, I.B. Bykhalo, A.A. Pelmenev, Low Temp. Phys. 38, 688 (2012). https://doi.org/10.1063/1.4745675

    Article  ADS  Google Scholar 

  49. E.P. Bernard, R.E. Boltnev, V.V. Khmelenko, D.M. Lee, J. Low Temp. Phys. 134, 199 (2004). https://doi.org/10.1023/B:JOLT.0000012556.69060.eb

    Article  ADS  Google Scholar 

  50. R.E. Boltnev, I.B. Bykhalo, I.N. Krushinskaya, A.A. Pelmenev, V.V. Khmelenko, S. Mao, A. Meraki, S.C. Wilde, P.T. McColgan, D.M. Lee, J. Phys. Chem. A 119, 2438 (2015). https://doi.org/10.1021/jp508534t

    Article  Google Scholar 

  51. A.A. Pelmenev, I.B. Bykhalo, I.N. Krushinskaya, R.E. Boltnev, Low Temp. Phys. 45, 276 (2019). https://doi.org/10.1063/1.5090040

    Article  ADS  Google Scholar 

  52. E.B. Gordon, A. Usenko, G. Frossati, J. Low Temp. Phys. 130, 15 (2003). https://doi.org/10.1023/A:1021841217179

    Article  ADS  Google Scholar 

  53. E.B. Gordon, V.V. Khmelenko, A.A. Pelmenev, E.A. Popov, O.F. Pugachev, Chem. Phys. Lett. 155, 301 (1989). https://doi.org/10.1016/0009-2614(89)85329-1

    Article  ADS  Google Scholar 

  54. E.B. Gordon, V.V. Khmelenko, A.A. Pelmenev, E.A. Popov, O.F. Pugachev, A.F. Shestakov, Chem. Phys. 170, 411 (1993). https://doi.org/10.1016/0301-0104(93)85122-o

    Article  Google Scholar 

  55. R.E. Boltnev, E.B. Gordon, I.N. Krushinskaya, A.A. Pelmenev, E.A. Popov, O.F. Pugachev, V.V. Khmelenko, Sov. J. Low Temp. Phys. 18, 576 (1992)

    Google Scholar 

  56. R.E. Boltnev, E.B. Gordon, I.N. Krushinskaya, M.V. Martynenko, A.A. Pelmenev, E.A. Popov, V.V. Khmelenko, A.F. Shestakov, Low Temp. Phys. 23, 567 (1997). https://doi.org/10.1063/1.593424

    Article  ADS  Google Scholar 

  57. R.E. Boltnev, E.B. Gordon, V.V. Khmelenko, I.N. Krushinskaya, M.V. Martynenko, A.A. Pelmenev, E.A. Popov, A.F. Shestakov, Chem. Phys. 189, 367 (1994). https://doi.org/10.1016/0301-0104(94)00337-8

    Article  Google Scholar 

  58. J. Eloranta, Phys. Rev. B 77, 134301 (2008). https://doi.org/10.1103/PhysRevB.77.134301

    Article  ADS  Google Scholar 

  59. J. Eloranta, J. Low Temp. Phys. 162, 718 (2011). https://doi.org/10.1007/s10909-010-0239-7

    Article  ADS  Google Scholar 

  60. V. Kiryukhin, E.P. Bernard, V.V. Khmelenko, R.E. Boltnev, N.V. Krainyukova, D.M. Lee, Phys. Rev. Lett. 98, 195506 (2007). https://doi.org/10.1103/PhysRevLett.98.195506

    Article  ADS  Google Scholar 

  61. S.I. Kiselev, V.V. Khmelenko, D.M. Lee, V. Kiryukhin, R.E. Boltnev, E.B. Gordon, B. Keimer, Phys. Rev. B 65, 024517–024612 (2002). https://doi.org/10.1103/PhysRevB.65.024517

    Article  ADS  Google Scholar 

  62. R.E. Boltnev, I.B. Bykhalo, S.V. Ivashin, I.N. Krushinskaya, L.P. Mezhov-Deglin, J. Low Temp. Phys. 150, 511 (2008). https://doi.org/10.1007/s10909-007-9575-7

    Article  ADS  Google Scholar 

  63. B.V. Rollin, F. Simon, Physic 6, 219 (1939). https://doi.org/10.1016/S0031-8914(39)80013-1

    Article  ADS  Google Scholar 

  64. F. Bonnet, M. Melich, L. Puech, J.C. Angles d’Auriac, P.E. Wolf, Langmuir (2019). https://doi.org/10.1021/acs.langmuir.8b04275

    Article  Google Scholar 

  65. S.I. Kiselev, V.V. Khmelenko, D.A. Geller, D.M. Lee, J.R. Beamish, J. Low Temp. Phys. 119, 357 (2000). https://doi.org/10.1023/A:1004617819633

    Article  ADS  Google Scholar 

  66. M.A. Heald, R. Beringer, Phys. Rev. 96, 645 (1954). https://doi.org/10.1103/PhysRev.96.645

    Article  ADS  Google Scholar 

  67. A. Przystawik, S. Göde, T. Döppner, J. Tiggesbaumker, K.-H. Meiwes-Broer, Phys. Rev. A 78, 021202 (2008). https://doi.org/10.1103/PhysRevA.78.021202

    Article  ADS  Google Scholar 

  68. L. Kazak, S. Goede, K.-H. Meiwes-Broer, J. Tiggesbaeumker, J. Phys. Chem. A 123, 5951 (2019). https://doi.org/10.1021/acs.jpca.9b02880

    Article  Google Scholar 

  69. P.E. Parks, R.J. Donnelly, Phys. Rev. Lett. 16, 45 (1966). https://doi.org/10.1103/PhysRevLett.16.45

    Article  ADS  Google Scholar 

  70. Y.A. Sergeev, C.F. Barenghi, D. Kivotides, Phys. Rev. B 74, 184506 (2006). https://doi.org/10.1103/PhysRevB.74.184506

    Article  ADS  Google Scholar 

  71. A. Meraki, P.T. McColgan, S. Sheludiakov, D.M. Lee, V.V. Khmelenko, Low Temp. Phys. 45, 737 (2019). https://doi.org/10.1063/1.5111301

    Article  ADS  Google Scholar 

  72. N.V. Krainyukova, V.B. Efimov, L.P. Mezhov-Deglin, J. Low Temp. Phys. 171, 718 (2013). https://doi.org/10.1007/s10909-012-0728-y

    Article  ADS  Google Scholar 

  73. J.D. Reppy, J. Low Temp. Phys. 87, 205 (1992). https://doi.org/10.1007/BF00114905

    Article  ADS  Google Scholar 

  74. M. Chan, N. Mulders, J. Reppy, Phys. Today 49, 30 (1996). https://doi.org/10.1063/1.881509

    Article  Google Scholar 

  75. P. Spathis, A. Delga, C. Malheiro, P.E. Wolf, J. Low Temp. Phys. 171, 693 (2013). https://doi.org/10.1007/s10909-012-0767-4

    Article  ADS  Google Scholar 

  76. P. Moroshkin, A. Hofer, S. Ulzega, A. Weis, Nat. Phys. 3, 786 (2007). https://doi.org/10.1038/nphys727

    Article  Google Scholar 

  77. P. Moroshkin, A. Hofer, A. Weis, Phys. Rep. 469, 1 (2008). https://doi.org/10.1016/j.physrep.2008.06.004

    Article  ADS  Google Scholar 

  78. P. Moroshkin, V. Lebedev, A. Weis, Phys. Rev. Lett. 102, 115301 (2009). https://doi.org/10.1103/PhysRevLett.102.115301

    Article  ADS  Google Scholar 

  79. V. Lebedev, P. Moroshkin, A. Weis, Low Temp. Phys. 35, 299 (2009). https://doi.org/10.1063/1.3115814

    Article  ADS  Google Scholar 

  80. M. Dell’Aglio, A. De Giacomo, Appl. Surf. Science 515, 146031 (2020). https://doi.org/10.1016/j.apsusc.2020.146031

    Article  Google Scholar 

  81. V.E. Fortov, A.G. Khrapak, S.A. Khrapak, V.I. Molotkov, O.F. Petrov, Phys. Usp. 47, 447 (2004). https://doi.org/10.1070/PU2004v047n05ABEH001689

    Article  ADS  Google Scholar 

  82. M. Melich, J. Dupont-Roc, P. Jacquier, Eur. Phys. J. D 55, 53 (2009). https://doi.org/10.1140/epjd/e2009-00231-5

    Article  ADS  Google Scholar 

  83. M. Melich, Ph. D. thesis, Universite P. et M. Curie, 2008, http://tel.archives-ouvertes.fr/tel-00351769/fr/

  84. V. Lebedev, P. Moroshkin, A. Weis, Phys. Rev. A 84, 022502 (2011). https://doi.org/10.1103/PHYSREVA.84.022502

    Article  ADS  Google Scholar 

  85. A.A. Levchenko, E.V. Lebedeva, L.P. Mezhov-Deglin, A.A. Pelmenev, Low Temp. Phys. 45, 469 (2019). https://doi.org/10.1063/1.5097354

    Article  ADS  Google Scholar 

  86. P. Moroshkin, P. Leiderer, K. Kono, Phys. Fluids 29, 047106 (2017). https://doi.org/10.1063/1.4979819

    Article  ADS  Google Scholar 

  87. W.H. Zurek, Nature 317, 505 (1985). https://doi.org/10.1038/317505a0

    Article  ADS  Google Scholar 

  88. J.D. Reppy, D. Depatie, Phys. Rev. Lett. 12, 187 (1964). https://doi.org/10.1103/PhysRevLett.12.187

    Article  ADS  Google Scholar 

  89. V. Shukla, M. Brachet, R. Pandit, Phys. Rev. A 94, 041602 (2016). https://doi.org/10.1103/PhysRevA.94.041602

    Article  ADS  Google Scholar 

  90. U. Giuriato, G. Krstulovic, D. Proment, J. Phys. A: Math. Theor. 52, 305501 (2019). https://doi.org/10.1088/1751-8121/ab2607

    Article  Google Scholar 

  91. W.I. Glaberson, R.J. Donnelly, Structure, Distributions and Dynamics of Vortices in Helium II. Progress in Low Temp. Phys. 9, 1–142 (1986). https://doi.org/10.1016/s0079-6417(08)60013-x

    Article  Google Scholar 

  92. R.J. Donnelly, C.F. Barenghi, J. Phys. Chem. Ref. Data 27, 1217 (1998). https://doi.org/10.1063/1.556028

    Article  ADS  Google Scholar 

  93. P. Moroshkin, P. Leiderer, K. Kono, S. Inui, M. Tsubota, Phys. Rev. Lett. 122, 174502 (2019). https://doi.org/10.1103/PhysRevLett.122.174502

    Article  ADS  Google Scholar 

  94. S. Inui, M. Tsubota, Phys. Rev. B 101, 214511 (2020). https://doi.org/10.1103/PhysRevB.101.214511

    Article  ADS  Google Scholar 

  95. F.L. Leite, C.C. Bueno, A.L. Da Róz, E.C. Ziemath, O.N. Oliveira Jr., Int. J. Mol. Sci. 13, 12773 (2012). https://doi.org/10.3390/ijms131012773

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Program for Basic Researches 2013–2020 (project AAAA-A18-118112290069-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Boltnev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boltnev, R.E., Bykhalo, I.B. & Krushinskaya, I.N. Impurity Systems in Condensed Helium-4. J Low Temp Phys 208, 50–66 (2022). https://doi.org/10.1007/s10909-021-02617-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02617-4

Keywords

Navigation