Skip to main content

Advertisement

Log in

Revealing XRF data quality level, comparability with ICP-ES/ICP-MS soil PTE contents and similarities in PTE induced health risk

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Portable X-ray fluorescence spectroscopy (XRF) was recognized as an efficient and promising tools to study the contents of chemical elements in various media including soils under the impact of anthropogenic activities. However, the quality of data and the equality of chemical elements with other common analytical methods such as aqua-regia extraction vary depending on site, sample conditions, and analysis time. In this study, we examine the adequacy of XRF and ICP-ES/ICP-MS aqua-regia extractable (AR) results obtained for lab-type pretreated samples (N = 15) for Ti, Fe, Mn, Co, V, Pb, Zn, Cu, Cr, Mo, Sr, and As contents in soils under the impact of copper smelter and assess the equality of PTE contents induced health risk. The obtained results suggested that XRF reached definitive data quality level for As, Zn, and Mn and screening (quantitative) data quality level established for Cu, Pb, Fe, Mo, Cr, V, and Ti. Moreover, in some cases (i.e., for Ti) XRF overperformed AR indicating the high efficiency of XRF application when sparingly soluble mineral matrices are presented. At the same time, PTE induced health risk assessment at the established data quality level showed that equality of non-carcinogenic children health risk was observed for As, Zn, Cu, Pb, Mn, and V. The latter indicating the applicability of XRF to generate reliable base for risky sites identification and characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ajmone-Marsan, F., & Biasioli, M. (2010). Trace elements in soils of urban areas. Water, Air, and Soil Pollution, 213(1–4), 121–143. https://doi.org/10.1007/s11270-010-0372-6

    Article  CAS  Google Scholar 

  • Arne, D. C., Mackie, R. A., & Jones, S. A. (2014). The use of property-scale portable X-ray fluorescence data in gold exploration: advantages and limitations. Geochemistry: Exploration, Environment, Analysis, 14, 233–244. https://doi.org/10.1144/geochem2013-233

  • Arnoldussen, S., & Van Os, B. J. H. (2015). Catena The potential of lacquer-peel soil pro fi les for palaeo-geochemical analysis using XRF analysis. CATENA, 128, 16–30. https://doi.org/10.1016/j.catena.2015.01.011

    Article  CAS  Google Scholar 

  • Bezur, A., & Casadio, F. (2019). The analysis of porcelain using handheld and portable X-ray fluorescence spectrometers. In Handheld XRF for Art and Archaeology (pp. 249–312). https://doi.org/10.2307/j.ctt9qdzfs.12

  • Brent, R. N., Wines, H., Luther, J., Irving, N., Collins, J., & Drake, B. L. (2017). Validation of handheld X-ray fluorescence for in situ measurement of mercury in soils. Journal of Environmental Chemical Engineering, 5(1), 768–776. https://doi.org/10.1016/j.jece.2016.12.056

    Article  CAS  Google Scholar 

  • Bull, A., Brown, M. T., & Turner, A. (2017). Novel use of field-portable-XRF for the direct analysis of trace elements in marine macroalgae. Environmental Pollution, 220, 228–233. https://doi.org/10.1016/j.envpol.2016.09.049

    Article  CAS  Google Scholar 

  • Bureau Veritas Minerals. (2018). US Bureau Veritas Minerals.

  • Caporale, A. G., Adamo, P., Capozzi, F., Langella, G., Terribile, F., & Vingiani, S. (2018). Science of the total environment monitoring metal pollution in soils using portable-XRF and conventional laboratory-based techniques: Evaluation of the performance and limitations according to metal properties and sources. Science of the Total Environment, 643, 516–526. https://doi.org/10.1016/j.scitotenv.2018.06.178

    Article  CAS  Google Scholar 

  • Carr, R., Zhang, C., Moles, N., & Harder, M. (2008). Identification and mapping of heavy metal pollution in soils of a sports ground in Galway City, Ireland, using a portable XRF analyser and GIS. Environmental Geochemistry and Health, 30(1), 45–52. https://doi.org/10.1007/s10653-007-9106-0

    Article  CAS  Google Scholar 

  • CENS. (2020). Center for ecological-noosphere studies. http://cens.am/

  • Chakraborty, S., Man, T., Paulette, L., Deb, S., Li, B., Weindorf, D. C., & Frazier, M. (2017). Rapid assessment of smelter/mining soil contamination via portable X-ray fluorescence spectrometry and indicator kriging. Geoderma, 306, 108–119. https://doi.org/10.1016/j.geoderma.2017.07.003

    Article  CAS  Google Scholar 

  • Cicchella, D., De Vivo, B., Lima, A., Albanese, S., McGill, R. A. R., & Parrish, R. R. (2008). Heavy metal pollution and Pb isotopes in urban soils of Napoli, Italy. Geochemistry: Exploration, Environment, Analysis, 8(1), 103–112. https://doi.org/10.1144/1467-7873/07-148

  • Darnley, A. G., Bjorklund, A., Bolviken, B., Gustavsson, N., Koval, P. V., Steenfelt, A., Plant, J. A., Tauchid, M., & Xuejing, X. (1995). A global geochemical database for environmental and resource management.

  • Fomin, G. S., & Fomin, A. G. (2001). Soil. Inspection of quality and ecological safety according to international standards. State Standard of Russia.

    Google Scholar 

  • Gazley, M. F., Bonnett, L. C., Fisher, L. A., Salama, W., Price, J. H., Bonnett, L. C., et al. (2017). A workflow for exploration sampling in regolith- dominated terranes using portable X-ray fluorescence: Comparison with laboratory data and a case study. Australian Journal of Earth Sciences, 64(7), 903–917. https://doi.org/10.1080/08120099.2017.1367721

    Article  CAS  Google Scholar 

  • Guimarães, D., Praamsma, M. L., & Parsons, P. J. (2016). Evaluation of a new optic-enabled portable X-ray fluorescence spectrometry instrument for measuring toxic metals/metalloids in consumer goods and cultural products. Spectrochimica Acta—Part B atomic spectroscopy (Vol. 122). Elsevier B.V. https://doi.org/10.1016/j.sab.2016.03.010

  • Haynes, H. M., Taylor, K. G., Rothwell, J., & Byrne, P. (2020). Characterisation of road-dust sediment in urban systems: A review of a global challenge. Journal of Soils and Sediments, 20(12), 4194–4217. https://doi.org/10.1007/s11368-020-02804-y

    Article  Google Scholar 

  • Hu, B., Chen, S., Hu, J., Xia, F., Xu, J., Li, Y., & Shi, Z. (2017). Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution, 1–13. https://doi.org/10.1371/journal.pone.0172438

  • Hunt, A. M. W., & Speakman, R. J. (2015). Portable XRF analysis of archaeological sediments and ceramics. Journal of Archaeological Science, 53, 628–638. https://doi.org/10.1016/j.jas.2014.11.031

    Article  CAS  Google Scholar 

  • ISO. (2005). ISO 10381–5:2005—Soil quality—sampling—part 5: Guidance on the procedure for the investigation of urban and industrial sites with regard to soil contamination. Retreived March 1, 2016, from http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=32427

  • Johnson, C. C., Demetriades, A., Locutura, J., & Ottesen, R. T. (2011). Mapping the chemical environment of urban areas. Wiley. https://doi.org/10.1017/CBO9781107415324.004

    Article  Google Scholar 

  • Kim, S., & Choi, Y. (2019). Mapping heavy metal concentrations in beach sands using GIS and portable XRF data. Journal of Marine Science and Engineering, 7(42), 1–10. https://doi.org/10.3390/jmse7020042

    Article  Google Scholar 

  • Lemière, B., Orléans, F., & Fax, F. T. (2018). A review of pxrf (field portable x-ray fluorescence) applications for applied geochemistry. Journal of Geochemical Exploration, 188, 350–363. https://doi.org/10.1016/j.gexplo.2018.02.006

    Article  CAS  Google Scholar 

  • Li, F., Lu, A., & Wang, J. (2017). Modeling of chromium , copper , zinc , arsenic and lead using portable X-ray fluorescence spectrometer based on discrete wavelet transform. https://doi.org/10.3390/ijerph14101163

  • Little, N. C., Florey, V., Molina, I., Owsley, D. W., & Speakman, R. J. (2014). Measuring heavy metal content in bone using portable X-ray fluorescence. Open Journal of Archaeometry, 2(1), 19–21. https://doi.org/10.4081/arc.2014.5257

    Article  Google Scholar 

  • Manucharyan, V. (1985). Explanatory note to schematic engineering-geological maps of Yerevan, Kirovakan. Hrazdan and Alaverdi: Scale of, 1, 10000.

    Google Scholar 

  • Mejía-piña, K. G., Huerta-diaz, M. A., & González-yajimovich, O. (2016). Talanta Calibration of handheld X-ray fl uorescence ( XRF ) equipment for optimum determination of elemental concentrations in sediment samples. Talanta, 161, 359–367. https://doi.org/10.1016/j.talanta.2016.08.066

    Article  CAS  Google Scholar 

  • Murphy, T., Lim, S., Huong, S. P., Irvine, K., Bayen, S., Kelly, B. C., & Wilson, K. (2015). Application of Handheld X-Ray Fluorescence Analyzers to Identify Mercury in Skin-Whitening Creams in Cambodia. Journal of Health and Pollution, 2(3), 21–31. https://doi.org/10.5696/2156-9614-2.3.21

    Article  Google Scholar 

  • Palmer, P. T., Jacobs, R., Baker, P. E., Ferguson, K., & Webber, S. (2009). Use of field-portable XRF analyzers for rapid screening of toxic elements in fda-regulated products. Journal of Agricultural and Food Chemistry, 57(7), 2605–2613. https://doi.org/10.1021/jf803285h

    Article  CAS  Google Scholar 

  • Piercey, S. J., & Devine, M. C. (2014). Analysis of powdered reference materials and known samples with a benchtop, field portable X-ray fluorescence (pXRF) spectrometer: evaluation of performance and potential applications for exploration lithogeochemistry. Geochemistry: Exploration, Environment, Analysis, 14(2), 139–148. https://doi.org/10.1144/geochem2013-199

  • RA Government. (2007). On approval of the main planof the Alaverdi community (residence) of Lori marz of the Republic of Armenia (2007).

  • RAIS. (2021). Risk Exposure Models for Chemicals User’s Guide. The Risk Assessment Information System. Retrieved January 1, 2020, from https://rais.ornl.gov/tools/rais_chemical_risk_guide.html

  • Ravansari, R., Wilson, S. C., & Tighe, M. (2020). Portable X-ray fluorescence for environmental assessment of soils: Not just a point and shoot method. Environment International, 134(October 2019), 105250. https://doi.org/10.1016/j.envint.2019.105250

  • Reimann, C., Filzmoser, P., Garrett, R. G., & Dutter, R. (2008). Statistical data analysis explained. Statistical Data Analysis Explained. https://doi.org/10.1002/9780470987605

    Article  Google Scholar 

  • Revenko, A. G. (2011). Development of X-ray fluorescence analysis in Russia in 1991–2010. Journal of Analytical Chemistry, 66(11), 1059–1072. https://doi.org/10.1134/s1061934811110116

    Article  CAS  Google Scholar 

  • Revich, B. A., Smirnova, R. S., & Sorokina, E. P. (1982). Methodological guidance for geochemical assessment of polluted sites by chemical elements. IMGRE

  • Rouillon, M., & Taylor, M. P. (2016). Can fi eld portable X-ray fl uorescence ( pXRF ) produce high quality data for application in environmental contamination research? Environmental Pollution, 214, 255–264. https://doi.org/10.1016/j.envpol.2016.03.055

    Article  CAS  Google Scholar 

  • Ryan, J. G., Shervais, J. W., Li, Y., Reagan, M. K., Li, H. Y., Heaton, D., et al. (2017). Application of a handheld X-ray fluorescence spectrometer for real-time, high-density quantitative analysis of drilled igneous rocks and sediments during IODP Expedition 352. Chemical Geology, 451, 55–66. https://doi.org/10.1016/j.chemgeo.2017.01.007

    Article  CAS  Google Scholar 

  • Saet, Y. E., Revich, B. A., & Yanin, E. P. (1990). Environmental geochemistry. Nedra.

    Google Scholar 

  • Steiner, A. E., Conrey, R. M., & Wolff, J. A. (2017). PXRF calibrations for volcanic rocks and the application of in-field analysis to the geosciences. Chemical Geology, 453, 35–54. https://doi.org/10.1016/j.chemgeo.2017.01.023

    Article  CAS  Google Scholar 

  • Stockmann, U., Cattle, S. R., Minasny, B., & Mcbratney, A. B. (2016). Catena Utilizing portable X-ray fluorescence spectrometry for in- field investigation of pedogenesis, 139, 220–231. https://doi.org/10.1016/j.catena.2016.01.007

  • Tepanosyan, G., Sahakyan, L., Maghakyan, N., & Saghatelyan, A. (2020). Combination of compositional data analysis and machine learning approaches to identify sources and geochemical associations of potentially toxic elements in soil and assess the associated human health risk in a mining city. Environmental Pollution, 261, 114210. https://doi.org/10.1016/j.envpol.2020.114210

    Article  CAS  Google Scholar 

  • Tighe, M., Rogan, G., Wilson, S. C., Grave, P., Kealhofer, L., & Yukongdi, P. (2018). The potential for portable X-ray fluorescence determination of soil copper at ancient metallurgy sites, and considerations beyond measurements of total concentrations. Journal of Environmental Management, 206, 373–382. https://doi.org/10.1016/j.jenvman.2017.10.052

    Article  CAS  Google Scholar 

  • Turner, A., & Filella, M. (2017). Field-portable-XRF reveals the ubiquity of antimony in plastic consumer products. Science of the Total Environment, 584–585, 982–989. https://doi.org/10.1016/j.scitotenv.2017.01.149

    Article  CAS  Google Scholar 

  • Turner, A., & Taylor, A. (2018). Talanta On site determination of trace metals in estuarine sediments by field. Talanta, 190(August), 498–506. https://doi.org/10.1016/j.talanta.2018.08.024

    Article  CAS  Google Scholar 

  • U.S. EPA. (1998). Environmental technology verification report field portable X-ray fluorescence analyzer, (March). https://nepis.epa.gov/Adobe/PDF/30003LR0.pdf

  • Urrutia-Goyes, R., Argyraki, A., & Ornelas-Soto, N. (2018). Characterization of soil contamination by lead around a former battery factory by applying an analytical hybrid method. Environmental Monitoring and Assessment, 190(7). https://doi.org/10.1007/s10661-018-6820-2

  • Vardanyan, M., & Valesyan, L. (2007). National Atlas of Armenia.

  • US EPA. (1989a). Risk assessment guidance for superfund volume I human health evaluation manual (part A) interim final risk assessment guidance for superfund human health evaluation manual (part A ) interim final (Vol. I).

  • US EPA. (1989b). Risk assessment guidance for superfund (RAGS), volume I: Human health evaluation manual (HHEM). Part A. Baseline risk assessment. EPA/540/1–89/002

  • US EPA. (1999). Field sampling guidance document #1205. Soil sampling. Rev. 2 9/99

  • US EPA. (2007). Field portable x-ray fluorescence spectrometry for the determination of elemental concentrations in soil and sediment. Method 6200

  • US EPA Method 6200. (2007). Field portable x-ray fluorescence spectrometry for the determination of elemental concentrations in soil and sediment. http://yosemite.epa.gov/r9/sfund/r9sfdocw.nsf/3dc283e6c5d6056f88257426007417a2/e599199dc919b049882576a300616943/$file/attachment1.pdf#_ga=1.260838029.1899728909.1418825614

  • Young, K. E., Evans, C. A., Hodges, K. V., Bleacher, J. E., & Graff, T. G. (2016). A review of the handheld X-ray fluorescence spectrometer as a tool for field geologic investigations on Earth and in planetary surface exploration. Applied Geochemistry, 72, 77–87. https://doi.org/10.1016/j.apgeochem.2016.07.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the RA MESCS Science Committee, in the frames of the research project №18T-1E145 entitled “Ecogeochemical investigations as a base of decision making (a case study of the city of Alaverdi)” and State Budgetary Fund.

Funding

This work was supported by the RA MES Science Committee, in the frames of the research project No. 8T-1E145 entitled “Ecogeochemical investigations as a base of decision making (a case study of the city of Alaverdi)”.

Author information

Authors and Affiliations

Authors

Contributions

GT: Conceptualization, investigation, methodology, formal analysis, visualization, writing—original draft, writing—review and editing. NH: Investigation, visualization, writing—original draft, writing—review and editing. LS: Investigation, methodology, writing—original draft, writing—review and editing, supervision, project administration.

Corresponding author

Correspondence to Gevorg Tepanosyan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare no financial interests/personal relationships which may be considered as potential competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tepanosyan, G., Harutyunyan, N. & Sahakyan, L. Revealing XRF data quality level, comparability with ICP-ES/ICP-MS soil PTE contents and similarities in PTE induced health risk. Environ Geochem Health 44, 1739–1750 (2022). https://doi.org/10.1007/s10653-021-01079-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-01079-7

Keywords

Navigation