Skip to main content
Log in

Investigation of Mechanical Properties and Optimization of Forming Parameters of Al7075-B4C-Fly Ash Hybrid Aluminium Matrix Composite

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The present need for lightweight, high-strength materials in advanced applications has prompted researchers to concentrate on hybrid aluminium matrix composites (HAMCs). For automotive applications, boron carbide (B4C) and fly ash (FA)-reinforced HAMCs are viable options. Mechanical characterization of stir-casted B4C and FA-reinforced Al7075 HAMCs was done in this study. The compositions of the examined composites are (x = 2; y = 2), (x = 2; y = 4), (x = 2; y = 6), (x = 2; y = 8), and (x = 2; y = 10), where x is the weight per cent of FA and y is the weight per cent of B4C, according to the prior research. The composite with (x = 2; y = 8) was determined to have the best mechanical characteristics and was considered for further cold upsetting process optimization. Cold upsetting is one of the types of forming process used in automotive applications. Aspect ratio, load, and friction factor were used as input parameters in this procedure. The formability index and barrel radius, on the other hand, are response parameters that reflect the process' performance. The Grey-Taguchi technique was chosen for optimization since it is appropriate for multi-response optimization problems of this nature. The findings were the optimal combination of parameters and the per cent contribution of significant parameters. Finally, the validation experiment was carried out using the best possible combination of parameters, and the validation results are in excellent agreement with the suggested outcomes. This study may offer a more in-depth performance evaluation of boron carbide and fly ash-reinforced HAMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ravishankar, B.; Nayak, S.K.; Kader, M.A.: Hybrid composites for automotive applications–A review. J. Reinf. Plast. Compos. (2019). https://doi.org/10.1177/0731684419849708

    Article  Google Scholar 

  2. Singh, J.; Chauhan, A.: Characterization of hybrid aluminum matrix composites for advanced applications-A review. J. Mater. Res. Technol. 5, 159–169 (2016). https://doi.org/10.1016/j.jmrt.2015.05.004

    Article  Google Scholar 

  3. Idrisi, A.H.; Mourad, A.H.I.: Conventional stir casting versus ultrasonic assisted stir casting process: mechanical and physical characteristics of AMCs. J. Alloys Compd. 805, 502–508 (2019). https://doi.org/10.1016/j.jallcom.2019.07.076

    Article  Google Scholar 

  4. Shin, J.H.; Bae, D.H.: Effect of the TiO2 nanoparticle size on the decomposition behaviors in aluminum matrix composites. Mater. Chem. Phys. 143, 1423–1430 (2014). https://doi.org/10.1016/j.matchemphys.2013.11.057

    Article  Google Scholar 

  5. David, R.; Dasgupta, R.; Prasad, B.K.: Effect of fine TiC particle reinforcement on the dry sliding wear behavior of in situ synthesized ZA27 alloy. J. Tribol. (2019). https://doi.org/10.1115/1.4041257

    Article  Google Scholar 

  6. Sugiawati, V.A.; Vacandio, F.; Galeyeva, A., et al.: Enhanced electrochemical performance of electropolymerized self-organized TiO2 nanotubes fabricated by anodization of Ti grid. Front. Phys. 7, 1–8 (2019). https://doi.org/10.3389/fphy.2019.00179

    Article  Google Scholar 

  7. Schöttner, L.; Nefedov, A.; Yang, C., et al.: Structural evolution of α-Fe2O3(0001) surfaces under reduction conditions monitored by infrared spectroscopy. Front. Chem. 7, 1–12 (2019). https://doi.org/10.3389/fchem.2019.00451

    Article  Google Scholar 

  8. Sahu, M.K.; Sahu, R.K.: Experimental investigation, modelling, and optimization of wear parameters of B 4 C and fly-ash reinforced aluminum hybrid composite. Front. Phys. 8, 1–14 (2020)

    Article  Google Scholar 

  9. Lakshmanan, M.; SelwinRajadurai, J.; Chakkravarthy, V.; Rajakarunakaran, S.: Wear and EBSD studies on (SiC/NiTi) reinforced Al7075 composite. Mater. Lett. 272, 127879 (2020). https://doi.org/10.1016/j.matlet.2020.127879

    Article  Google Scholar 

  10. Manikandan, R.; Arjunan, T.V.; Akhil, A.R.: Studies on micro structural characteristics, mechanical and tribological behaviours of boron carbide and cow dung ash reinforced aluminium (Al 7075) hybrid metal matrix composite. Compos. Part B Eng. 183, 107668 (2020). https://doi.org/10.1016/j.compositesb.2019.107668

    Article  Google Scholar 

  11. Kim, S.W.; Kim, D.Y.; Kim, W.G.; Woo, K.D.: The study on characteristics of heat treatment of the direct squeeze cast 7075 wrought Al alloy. Mater. Sci. Eng. A 304–306, 721–726 (2001). https://doi.org/10.1016/S0921-5093(00)01594-X

    Article  Google Scholar 

  12. Bodunrin, M.O.; Alaneme, K.K.; Chown, L.H.: Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. J. Mater. Res. Technol. 4, 434–445 (2015). https://doi.org/10.1016/j.jmrt.2015.05.003

    Article  Google Scholar 

  13. Gudipudi, S.; Nagamuthu, S.; Subbian, K.S.; Chilakalapalli, S.P.R.: Enhanced mechanical properties of AA6061-B4C composites developed by a novel ultra-sonic assisted stir casting. Eng. Sci. Technol. Int. J. (2020). https://doi.org/10.1016/j.jestch.2020.01.010

    Article  Google Scholar 

  14. Oluwatosin, M.; Keneth, K.; Heath, L.: Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. Integr. Med. Res. (2015). https://doi.org/10.1016/j.jmrt.2015.05.003

    Article  Google Scholar 

  15. Sahu, M.K; Sahu, R.K.: Aluminum based hybrid metal matrix composites: A review of selection philosophy and mechanical properties for advanced aluminum based hybrid metal matrix composites: A review of selection philosophy and mechanical properties for advanced applications. Int. J. Mech. Prod. Eng. Res. Dev. 10, 8–28 (2020)

    Google Scholar 

  16. Sahu, M.K.; Sahu, R.K.: Fabrication of aluminum matrix composites by stir casting technique and stirring process parameters optimization. In: Vijayaram, T. (ed.) Advanced Casting Techniques, pp. 111–126. IntechOpen (2018). https://doi.org/10.5772/intechopen.73485

  17. Sahu, M.K.; Valarmathi, A.; Baskaran, S., et al.: Multi-objective optimization of upsetting parameters of Al-TiC metal matrix composites: a grey Taguchi approach. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 228, 1501–1507 (2014). https://doi.org/10.1177/0954405413519434

    Article  Google Scholar 

  18. Sahu, M.K.; Sahu, R.K.: Synthesis, microstructure and hardness of Al 7075/B4C/Fly-ash composite using stir casting method. Mater. Today Proc. 27, 2401–2406 (2019). https://doi.org/10.1016/j.matpr.2019.09.150

    Article  Google Scholar 

  19. Lei, Z.; Bi, J.; Chen, Y., et al.: Effect of TiB2 content on microstructural features and hardness of TiB2/AA7075 composites manufactured by LMD. J. Manuf. Process. 53, 283–292 (2020). https://doi.org/10.1016/j.jmapro.2020.02.036

    Article  Google Scholar 

  20. Jiang, B.; Zhenglong, L.; Xi, C., et al.: Microstructure and mechanical properties of TiB2-reinforced 7075 aluminum matrix composites fabricated by laser melting deposition. Ceram. Int. 45, 5680–5692 (2019). https://doi.org/10.1016/j.ceramint.2018.12.033

    Article  Google Scholar 

  21. Gao, M.; Kang, H.; Chen, Z., et al.: Enhanced strength-ductility synergy in a boron carbide reinforced aluminum matrix composite at 77 K. J. Alloys Compd. 818, 153310 (2020). https://doi.org/10.1016/j.jallcom.2019.153310

    Article  Google Scholar 

  22. David Raja Selvam, J.; Dinaharan, I.; Rai, R.S.; Mashinini, P.M.: Dry sliding wear behaviour of in-situ fabricated TiC particulate reinforced AA6061 aluminium alloy. Tribol – Mater. Surf. Interfaces 13, 1–11 (2019). https://doi.org/10.1080/17515831.2018.1550971

    Article  Google Scholar 

  23. Chen, F.; Chen, Z.; Mao, F., et al.: TiB2 reinforced aluminum based in situ composites fabricated by stir casting. Mater. Sci. Eng. A 625, 357–368 (2015). https://doi.org/10.1016/j.msea.2014.12.033

    Article  Google Scholar 

  24. Azadi, M.; Zolfaghari, M.; Rezanezhad, S.; Azadi, M.: Effects of SiO2nano-particles on tribological and mechanical properties of aluminum matrix composites by different dispersion methods. Appl. Phys. A Mater. Sci. Process. (2018). https://doi.org/10.1007/s00339-018-1797-9

    Article  Google Scholar 

  25. Reddy, T.P.; Kishore, S.J.; Theja, P.C.; Rao, P.P.: Development and wear behavior investigation on aluminum-7075/B4C/fly ash metal matrix composites. Adv. Compos. Hybrid Mater. (2020). https://doi.org/10.1007/s42114-020-00145-5

    Article  Google Scholar 

  26. Viala, J.C.; Bouix, J.; Gonzalez, G.; Esnouf, C.: Chemical reactivity of aluminium with boron carbide. J. Mater. Sci. 32, 4559–4573 (1997). https://doi.org/10.1023/A:1018625402103

    Article  Google Scholar 

  27. Baradeswaran, A.; Elaya Perumal, A.: Influence of B4C on the tribological and mechanical properties of Al 7075–B4C composites. Compos. Part B Eng. 54, 146–152 (2013). https://doi.org/10.1016/j.compositesb.2013.05.012

    Article  Google Scholar 

  28. Callister, W.D.; Rethwisch, D.G.: Materials Science and Engineering: an Introduction, p. 665–715. Wiley, New York (2007)

    Google Scholar 

  29. Shorowordi, K.M.; Laoui, T.; Haseeb, A.S.M.A., et al.: Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: a comparative study. J. Mater. Process. Technol. 142, 738–743 (2003). https://doi.org/10.1016/S0924-0136(03)00815-X

    Article  Google Scholar 

  30. Emmy Prema, C.; Suresh, S.; Ramanan, G.; Sivaraj, M.: Characterization, corrosion and failure strength analysis of Al7075 influenced with B4C and Nano-Al2O3 composite using online acoustic emission. Mater. Res. Express (2020). https://doi.org/10.1088/2053-1591/ab6257

    Article  Google Scholar 

  31. Sivaprasad, K.; Babu, S.P.K.; Natarajan, S., et al.: Study on abrasive and erosive wear behaviour of Al 6063/TiB2 in situ composites. Mater. Sci. Eng. A 498, 495–500 (2008). https://doi.org/10.1016/j.msea.2008.09.003

    Article  Google Scholar 

  32. Samer, N.; Andrieux, J.; Gardiola, B., et al.: Microstructure and mechanical properties of an Al-TiC metal matrix composite obtained by reactive synthesis. Compos. Part A Appl. Sci. Manuf. 72, 50–57 (2015). https://doi.org/10.1016/j.compositesa.2015.02.001

    Article  Google Scholar 

  33. Wang, X.; Zhang, N.; Zhang, Y., et al.: Multiple flocculant prepared with dealkalized red mud and fly ash: properties and characterization. J. Water Process. Eng. (2020). https://doi.org/10.1016/j.jwpe.2020.101173

    Article  Google Scholar 

  34. Arunachalam, S.; Chelladurai, S.J.S.: Optimization of dry sliding wear parameters of AA336 aluminum alloy-boron carbide and fly ash reinforced hybrid composites by stir casting process. Materwiss Werksttech 51, 189–198 (2020). https://doi.org/10.1002/mawe.201900069

    Article  Google Scholar 

  35. Behera, M.P.; Dougherty, T.; Singamneni, S.: Conventional and additive manufacturing with metal matrix composites: a perspective. Proced. Manuf. 30, 159–166 (2019). https://doi.org/10.1016/j.promfg.2019.02.023

    Article  Google Scholar 

  36. Chandra B.; Kumar J.; Singh H.; Kumar J.: (2015) Production technologies of metal matrix composite-a review. In: 4th International Conference Advanced Material Manufacturing Technology 5762:9

  37. Bi, J.; Bin, C.Y.; Chen, X., et al.: Densification, microstructural features and tensile properties of selective laser melted AlMgSiScZr alloy from single track to block specimen. J. Cent. South Univ. 28, 1129–1143 (2021). https://doi.org/10.1007/s11771-021-4685-y

    Article  Google Scholar 

  38. Selvam, J.D.R.; Smart, D.S.S.R.; Dinaharan, I.: Microstructure and some mechanical properties of fly ash particulate reinforced AA6061 aluminum alloy composites prepared by compocasting. Mater. Des. 49, 28–34 (2013). https://doi.org/10.1016/j.matdes.2013.01.053

    Article  Google Scholar 

  39. Kok, M.: Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites. J. Mater. Process. Technol. 161, 381–387 (2005). https://doi.org/10.1016/j.jmatprotec.2004.07.068

    Article  Google Scholar 

  40. Sahu, M.K.; Sahu, R.K.: Optimization of stirring parameters using CFD simulations for HAMCs synthesis by stir casting process. Trans. Indian Inst. Met. 70, 2563–2570 (2017). https://doi.org/10.1007/s12666-017-1119-5

    Article  Google Scholar 

  41. Hirscvogel, M.; Dommelen, H.V.: Some applications of cold and warm forging. J. Mater. Process. Tech. 35, 343–356 (1992). https://doi.org/10.1016/0924-0136(92)90326-N

    Article  Google Scholar 

  42. Hartlen, D.C.; Doman, D.A.: A constitutive model fitting methodology for ductile metals using cold upsetting tests and numeric optimization techniques. J. Eng. Mater. Technol. Trans. ASME 141, 1–8 (2019). https://doi.org/10.1115/1.4040592

    Article  Google Scholar 

  43. Joseph, R.T.M.; Kanmani, D.S.: Effect of selective heating on formability and densification of powder metallurgy preforms during upsetting. Trans. Indian Inst. Met. 72, 1289–1298 (2019). https://doi.org/10.1007/s12666-019-01625-z

    Article  Google Scholar 

  44. Prabhakar, P.P.S.M.; Sathish, V.A.S.: Multi-objective optimization of cold upsetting parameters for aluminium metal matrix composites. Trans. Indian Inst. Met. 71, 909–914 (2018). https://doi.org/10.1007/s12666-017-1222-7

    Article  Google Scholar 

  45. Narayanasamy, R.; Anandakrishnan, V.; Pandey, K.S.: Some aspects on plastic deformation of copper and copper-titanium carbide powder metallurgy composite preforms during cold upsetting. Int. J. Mater. Form. 1, 189–209 (2008). https://doi.org/10.1007/s12289-008-0383-7

    Article  Google Scholar 

  46. Ananthanarayanan, R.; Ahmed, Z.; Prasad, A.; Narayan, S.: Strain hardening analysis and modelling of its parameters for sintered Al and Al-1%C preforms during cold upsetting. J. Mater. Res. Technol. 8, 1789–1797 (2019). https://doi.org/10.1016/j.jmrt.2018.12.009

    Article  Google Scholar 

  47. Shirvanimoghaddam, K.; Khayyam, H.; Abdizadeh, H., et al.: Boron carbide reinforced aluminium matrix composite: physical, mechanical characterization and mathematical modelling. Mater. Sci. Eng. A 658, 135–149 (2016). https://doi.org/10.1016/j.msea.2016.01.114

    Article  Google Scholar 

  48. Baradeswaran, A.; Vettivel, S.C.; Elaya Perumal, A., et al.: Experimental investigation on mechanical behaviour, modelling and optimization of wear parameters of B4C and graphite reinforced aluminium hybrid composites. Mater. Des. 63, 620–632 (2014). https://doi.org/10.1016/j.matdes.2014.06.054

    Article  Google Scholar 

  49. Subramaniam, B.; Natarajan, B.; Kaliyaperumal, B.; Chelladurai, S.J.S.: Wear behaviour of aluminium 7075 - bBoron carbide- coconut shell fly ash reinforced hybrid metal matrix composites. Mater. Res. Express 6, 449–456 (2019). https://doi.org/10.1088/2053-1591/ab4052

    Article  Google Scholar 

  50. Mahanta, S.; Chandrasekaran, M.; Samanta, S.; Arunachalam, R.: Multi-response ANN modelling and analysis on sliding wear behavior of Al7075/B4C/fly ash hybrid nanocomposites. Mater. Res. Express (2019). https://doi.org/10.1088/2053-1591/ab28d8

    Article  Google Scholar 

  51. Narayanasamy, R.; Ramesh, T.; Pandey, K.S.: Workability studies on cold upsetting of Al-Al2O3 composite material. Mater. Des. 27, 566–575 (2006). https://doi.org/10.1016/j.matdes.2004.12.005

    Article  Google Scholar 

  52. Khanawapee, U.; Butdee, S.: Materials today: proceedings a study of barreling and DEFORM 3D simulation in cold upsetting of. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.02.252

    Article  Google Scholar 

  53. Kanca, E.; Eyercioglu, O.: Determination of barreling of aluminum solid cylinders during cold upsetting using genetic algorithm. Matéria (Rio de Janeiro) (2019). https://doi.org/10.1590/s1517-707620190001.0621

    Article  Google Scholar 

  54. Krishna, M.G.: Fabrication and cold upsetting behaviour Of Al-5. 4ZN alloy/coal ash/sic particles reinforced composites. Int. J. Mech. Eng. Technol. 10, 298–303 (2019)

    MathSciNet  Google Scholar 

  55. Surace, R.; De Filippis, L.A.C.; Ludovico, A.D.; Boghetich, G.: Application of Taguchi method for the multi-objective optimization of aluminium foam manufacturing parameters. Int. J. Mater. Form. 3, 1–5 (2010). https://doi.org/10.1007/s12289-009-0409-9

    Article  Google Scholar 

  56. Haddad, M.J.; Tajik, M.; Tehrani, A.F., et al.: An experimental investigation of cylindrical wire electrical discharge turning process using Taguchi approach. Int. J. Mater. Form. 2, 167–179 (2009). https://doi.org/10.1007/s12289-009-0401-4

    Article  Google Scholar 

  57. Canute, X.; Majumder, M.C.: Mechanical and tribological behaviour of stir cast aluminium/boron carbide/fly ash composites. J. Eng. Sci. Technol. 13, 755–777 (2018)

    Google Scholar 

  58. Baradeswaran, A.; Perumal, A.E.: Study on mechanical and wear properties of Al 7075/Al2O3/graphite hybrid composites. Compos. Part B Eng. 56, 464–471 (2014). https://doi.org/10.1016/j.compositesb.2013.08.013

    Article  Google Scholar 

  59. Manisekar, K.; Narayanasamy, R.: Effect of friction on barrelling in square and rectangular billets of aluminium during cold upset forging. Mater. Des. 28, 592–598 (2007). https://doi.org/10.1016/j.matdes.2005.07.017

    Article  Google Scholar 

  60. Malayappan, S.; Narayanasamy, R.: Observations of barrelling in aluminium solid cylinders during cold upsetting using different lubricants. Mater. Sci. Technol. 19, 1705–1708 (2003). https://doi.org/10.1179/026708303225009454

    Article  Google Scholar 

  61. Vujovic, V.; Shabaik, A.H.: A new workability criterion for ductile metals. J. Eng. Mater. Technol. Trans. ASME (1986). https://doi.org/10.1115/1.3225876

    Article  Google Scholar 

  62. Narayanasamy, R.; Pandey, K.S.: Phenomenon of barrelling in aluminium solid cylinders during cold upset-forming. J. Mater. Process. Technol. 70, 17–21 (1997). https://doi.org/10.1016/S0924-0136(97)00035-6

    Article  Google Scholar 

  63. Kiran, T.S.; Kumar, M.P.; Basavarajappa, S.; Viswanatha, B.M.: Dry sliding wear behavior of heat treated hybrid metal matrix composite using Taguchi techniques. Mater. Des. (2014). https://doi.org/10.1016/j.matdes.2014.06.007

    Article  Google Scholar 

  64. Haq, A.N.; Marimuthu, P.; Jeyapaul, R.: Multi response optimization of machining parameters of drilling Al/SiC metal matrix composite using grey relational analysis in the Taguchi method. Int. J. Adv. Manuf. Technol. 37, 250–255 (2008). https://doi.org/10.1007/s00170-007-0981-4

    Article  Google Scholar 

  65. Fernlund, G.; Wells, J.; Fahrang, L., et al.: Causes and remedies for porosity in composite manufacturing. IOP Conf. Ser. Mater. Sci. Eng. (2016). https://doi.org/10.1088/1757-899X/139/1/012002

    Article  Google Scholar 

  66. Su, H.; Gao, W.; Zhang, H., et al.: Optimization of stirring parameters through numerical simulation for the preparation of aluminum matrix composite by stir casting process. J. Manuf. Sci. Eng. Trans. ASME 132, 0610071–0610077 (2010). https://doi.org/10.1115/1.4002851

    Article  Google Scholar 

  67. Rohatgi, P.K.; Kim, J.K.; Guo, R.Q., et al.: Age-hardening characteristics of aluminum alloy-hollow fly ash composites. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 33, 1541–1547 (2002). https://doi.org/10.1007/s11661-002-0076-7

    Article  Google Scholar 

  68. Nguyen, Q.B.; Gupta, M.: Microstructure and mechanical characteristics of AZ31B/Al2O 3 nanocomposite with addition of ca. J. Compos. Mater. 43, 5–17 (2009). https://doi.org/10.1177/0021998308096333

    Article  Google Scholar 

  69. Zhang, Z.; Tremblay, R.; Dubé, D.: Microstructure and mechanical properties of ZA104 (0.3-0.6Ca) die-casting magnesium alloys. Mater. Sci. Eng. A 385, 286–291 (2004). https://doi.org/10.1016/j.msea.2004.06.063

    Article  Google Scholar 

  70. Száraz, Z.; Trojanová, Z.; Cabbibo, M.; Evangelista, E.: Strengthening in a WE54 magnesium alloy containing SiC particles. Mater. Sci. Eng. A 462, 225–229 (2007). https://doi.org/10.1016/j.msea.2006.01.182

    Article  Google Scholar 

  71. Nguyen, Q.B.; Gupta, M.: Enhancing compressive response of AZ31B using nano-Al2O3 and copper additions. J. Alloys. Compd. 490, 382–387 (2010). https://doi.org/10.1016/j.jallcom.2009.09.188

    Article  Google Scholar 

  72. Muraliraja, R.; Arunachalam, R.; Al-Fori, I., et al.: Development of alumina reinforced aluminum metal matrix composite with enhanced compressive strength through squeeze casting process. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. (2018). https://doi.org/10.1177/1464420718809516

    Article  Google Scholar 

  73. Dey, A.; Pandey, K.M.: Magnesium metal matrix composites - a review. Rev. Adv. Mater. Sci. 42, 58–67 (2015)

    Google Scholar 

  74. Prasad, S.V.; Asthana, R.: Aluminum metal-matrix composites for automotive applications: tribological considerations. Tribol. Lett. 17, 445–453 (2004). https://doi.org/10.1023/B:TRIL.0000044492.91991.f3

    Article  Google Scholar 

  75. Puh F.; Jurkovic Z.; Perinic M., et al.: (2016) Optimizacija parametara obrade tokarenja s više kriterija kvalitete uporabom Grey relacijske analize. Teh Vjesn 23:377–382. https://doi.org/10.17559/TV-20150526131717

  76. Selvarajan, L.; Sathiya Narayanan, C.; Jeyapaul, R.; Manohar, M.: Optimization of EDM process parameters in machining Si3N4-TiN conductive ceramic composites to improve form and orientation tolerances. Meas. J. Int. Meas. Confed. 92, 114–129 (2016). https://doi.org/10.1016/J.MEASUREMENT.2016.05.018

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Kumar Sahu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, M.K., Sahu, R.K. Investigation of Mechanical Properties and Optimization of Forming Parameters of Al7075-B4C-Fly Ash Hybrid Aluminium Matrix Composite. Arab J Sci Eng 47, 8161–8176 (2022). https://doi.org/10.1007/s13369-021-06117-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06117-1

Keywords

Navigation