Skip to main content
Log in

Numerical Analysis on Hydrothermal Behavior of Various Ribbed Minichannel Heat Sinks with Different Hybrid Nanofluids

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Thermo-hydraulic behavior of the ribbed minichannel heat sink, having nine rectangular-shaped channels, is numerically investigated in the present study by using a multi-phase mixture model. Four different types of ribs (semi-circular, rectangular, triangular and trapezoidal ribs) and two hybrid nanofluids (Al2O3 + TiO2/DI water and Al2O3 + Cu/DI water) with a total nanoparticle volume concentration of 0.1% are considered. Heat transfer coefficient, Nusselt number, pressure drop, friction factor, performance evaluation criterion and thermal performance factor are evaluated for different Reynolds numbers (90–450) or flow rate (0.1–0.5 lpm). The maximum heat transfer coefficient (6690.12 W/m2 K) is observed for semi-circular ribs with Al2O3 + Cu hybrid nanofluid. The performance evaluation criterion is above 1 for all the cases except the plain channel with Al2O3 + TiO2 hybrid nanofluid at a lower flow rate. The combination of the semi-circular ribbed channel with Al2O3 + Cu hybrid nanofluid has a maximum performance evaluation criterion of 1.40 and that with Al2O3 + TiO2 hybrid nanofluid has a maximum thermal performance factor of 1.16. The thermal performance factor has an increasing trend with the flow rate for the semi-circular ribbed channel. The semi-circular ribbed channel shows better performance over other ribbed channels because the working fluid gets stuck and stagnant between two consecutive ribs in other ribbed channels, which leads to higher thermal resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

c p :

Specific heat (J/kg K)

f :

Friction factor

h :

Heat transfer coefficient (W/m2 K)

h ch :

Height of channel (mm)

k :

Thermal conductivity (W/m K)

L ch :

Length of channel (mm)

lpm:

Liter per min

n :

Number of phases

Nu:

Nusselt number

Pr:

Prandtl number

Re:

Reynolds number

T :

Temperature (°C)

V :

Velocity (m/s)

vol:

Volume

w ch :

Width of channel (mm)

Ag:

Silver

Al2O3 :

Aluminum oxide

Cu:

Copper

GnP:

Graphene nanoplate

Gr:

Graphene

HyNf:

Hybrid nanofluids

MCHS:

Mini/micro channel heat sink

MWCNT:

Multiwall carbon nanotubes

PEC:

Performance evaluation criteria

TiO2 :

Titanium oxide

TPF:

Thermal performance factor

UDF:

User-defined function

Δp :

Pressure drop (Pa)

µ :

Dynamic viscosity (Pa s)

ϕ :

Volume fraction of nanoparticles

ρ :

Density (kg/m3

avg:

Average

bf:

Base fluid

ch:

Channel

m:

Mixture

nf:

Hybrid nanofluid

p:

Nanoparticle

pc:

Plain (without rib) channel

rc:

Ribbed (with rib) channel

s:

Channel surface

References

  1. Tariq, H.A.; Anwar, M.; Malik, A.: Numerical investigation of mini-channel heat sink for microprocessor cooling: effect of slab thickness. Arab. J. Sci. Eng. 45, 5169–5177 (2020)

    Article  Google Scholar 

  2. Parida, P.R.; Ekkad, S.V.; Ngo, K.: Multi-layer mini-channel and ribbed mini-channel based high performance cooling configurations for automotive inverters—Part A: design and evaluation. J. Therm. Sci. Eng. Appl. 5, 031010 (2013)

    Article  Google Scholar 

  3. Behnampour, A.; Akbari, O.A.; Safaei, M.R.; Ghavami, M.; Marzban, A.; Shabani, G.A.S.; Zarringhalam, M.; Mashayekhi, R.: Analysis of heat transfer and nanofluid fluid flow in microchannels with trapezoidal, rectangular and triangular shaped ribs. Phys. E Low-dimens. Syst. Nanostruct. 91, 15–31 (2017)

    Article  Google Scholar 

  4. Nimmagadda, R.; Venkatasubbaiah, K.: Conjugate heat transfer analysis of micro-channel using novel hybrid nanofluids (Al2O3+Ag/Water). Eur. J. Mech. B/Fluids 52, 19–27 (2015)

    Article  MathSciNet  Google Scholar 

  5. Bahiraei, M.; Berahmand, M.; Shahsavar, A.: Irreversibility analysis for flow of a non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles in a minichannel heat exchanger. Appl. Therm. Eng. 125, 1083–1093 (2017)

    Article  Google Scholar 

  6. Mashayekhi, R.; Khodabandeh, E.; Akbari, O.A.; Toghraie, D.; Bahiraei, M.; Gholami, M.: CFD analysis of thermal and hydrodynamic characteristics of hybrid nanofluid in a new designed sinusoidal double-layered microchannel heat sink. J. Therm. Anal. Calorim. 134, 2305–2315 (2018)

    Article  Google Scholar 

  7. Kumar, V.; Sarkar, J.: Effect of different nanoparticles mixture dispersed nanofluids on hydrothermal characteristics in minichannel heat sink. Adv. Powder Technol. 31, 621–631 (2020)

    Article  Google Scholar 

  8. Uysal, C.; Gedik, E.; Chamkha, A.J.: A Numerical analysis of laminar forced convection and entropy generation of a Diamond-Fe3O4/water hybrid nanofluid in a rectangular minichannel. J. Appl. Fluid Mech. 12, 391–402 (2019)

    Article  Google Scholar 

  9. Shahsavar, A.; Godini, A.; Sardari, P.T.; Toghraie, D.; Salehipour, H.: Impact of variable fluid properties on forced convection of Fe3O4/CNT/water hybrid nanofluid in a double-pipe mini-channel heat exchanger. J. Therm. Anal. Calorim. 137, 1031–1043 (2019)

    Article  Google Scholar 

  10. Ho, C.J.; Guo, Y.; Yang, T.; Rashidi, S.; Yan, W.: Numerical study on forced convection of water-based suspensions of nanoencapsulated PCM particles/Al2O3 nanoparticles in a mini-channel heat sink. Int. J. Heat Mass Transf. 157, 119965 (2020)

    Article  Google Scholar 

  11. Tullius, J.F.; Bayazitoglu, Y.: Effect of Al2O3/H2O nanofluid on MWNT circular fin structures in a minichannel. Int. J. Heat Mass Transf. 60, 523–530 (2013)

    Article  Google Scholar 

  12. Zhang, J.; Diao, Y.; Zhao, Y.; Zhang, Y.: An experimental investigation of heat transfer enhancement in minichannel: combination of nanofluid and micro fin structure techniques. Exp. Therm. Fluid Sci. 81, 21–32 (2017)

    Article  Google Scholar 

  13. Kristiawan, B.; Wijayanta, A.T.; Enoki, K.; Miyazaki, T.; Aziz, M.: Heat transfer enhancement of TiO2/water nanofluids flowing inside a square minichannel with a microfin structure: a numerical investigation. Energies 12, 3041 (2019)

    Article  Google Scholar 

  14. Ambreen, T.; Saleem, A.; Ali, H.M.; Shehzad, S.A.; Park, C.W.: Performance analysis of hybrid nanofluid in a heat sink equipped with sharp and streamlined micro pin-fins. Powder Technol. 355, 552–563 (2019)

    Article  Google Scholar 

  15. Xu, C.; Xu, S.; Wei, S.; Chen, P.: Experimental investigation of heat transfer for pulsating flow of GOPs-water nanofluid in a microchannel. Int. Commun. Heat Mass Transf. 110, 104403 (2020)

    Article  Google Scholar 

  16. Gholami, M.R.; Akbari, O.A.; Marzban, A.; Toghraie, D.; Shabani, G.A.S.; Zarringhalam, M.: The effect of rib shape on the behavior of laminar flow of oil/MWCNT nanofluid in a rectangular microchannel. J. Therm. Anal. Calorim. 134, 1611–1628 (2018)

    Article  Google Scholar 

  17. Bahiraei, M.; Jamshidmofid, M.; Goodarzi, M.: Efficacy of a hybrid nanofluid in a new microchannel heat sink equipped with both secondary channels and ribs. J. Mol. Liq. 273, 88–98 (2019)

    Article  Google Scholar 

  18. Bahiraei, M.; Jamshidmofid, M.; Dahari, M.: Second law analysis of hybrid nanofluid flow in a microchannel heat sink integrated with ribs and secondary channels for utilization in miniature thermal devices. Chem. Eng. Process. 153, 107963 (2020)

    Article  Google Scholar 

  19. Kumar, V.; Sarkar, J.: Two-phase numerical simulation of hybrid nanofluid heat transfer in minichannel heat sink and experimental validation. Int. Commun. Heat Mass Transf. 91, 239–247 (2018)

    Article  Google Scholar 

  20. Mojarrad, M.S.; Keshavarz, Z.; Shokouhi, A.: Nanofluids thermal behavior analysis using a new dispersion model along with single-phase. Heat Mass Transf. 49, 1333–1343 (2013)

    Article  Google Scholar 

  21. Schiller, L.; Naumann, A.: A drag coefficient correlation. Z. Ver. Dtsch. Ing. 77, 318–320 (1935)

    Google Scholar 

  22. Takabi, B.; Salehi, S.: Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid. Adv. Mech. Eng. 2014, 147059 (2014)

    Article  Google Scholar 

  23. Kumar, V.; Sarkar, J.: Numerical and experimental investigations on heat transfer and pressure drop characteristics of Al2O3–TiO2 hybrid nanofluid in minichannel heat sink with different mixture ratio. Powder Technol. 345, 717–727 (2019)

    Article  Google Scholar 

  24. Moraveji, M.K.; Ardehali, R.M.: CFD modeling (comparing single and two-phase approaches) on thermal performance of Al2O3/water nanofluid in mini-channel heat sink. Int. Commun. Heat Mass Transf. 44, 157–164 (2013)

    Article  Google Scholar 

  25. Kumar, V.; Sarkar, J.: Particle ratio optimization of Al2O3–MWCNT hybrid nanofluid in minichannel heat sink for best hydrothermal performance. Appl. Therm. Eng. 165, 114546 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jahar Sarkar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Sarkar, J. Numerical Analysis on Hydrothermal Behavior of Various Ribbed Minichannel Heat Sinks with Different Hybrid Nanofluids. Arab J Sci Eng 47, 6209–6221 (2022). https://doi.org/10.1007/s13369-021-06119-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06119-z

Keywords

Navigation