Skip to main content
Log in

Preparation of graphene/flaky carbonyl iron/polyurethane foam composites and research on their microwave absorption properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, the polyurethane (PU) foam-based microwave absorbing materials filled with graphene (GP) and flaky carbonyl iron (FCI) particles were fabricated, and the effects of GP content and morphology structure on the microwave absorption (MA) properties were investigated. Scanning electron microscopy (SEM) and vector network analyzer (VNA) were used to elucidate the morphology structure and electromagnetic properties of the composite samples. The results showed that the absorption bandwidth of the materials could be improved by increasing the cell density. In particular, for a composite with 1.5 wt.% of GP and 70 wt.% of FCI, the minimum reflection loss (RL) of −53.8 dB was achieved at 9.4 GHz with the thickness of 2.2 mm, and the effective absorbing bandwidth (RL < -10 dB) of 8.1 GHz (9.9–18 GHz) was achieved with the thickness of 1.7 mm. The excellent MA properties of these materials were ascribed to the synergistic effect between the GP and FCI particles and the improved impedance matching resulting from the porous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and material

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. L.B. Kong, Z.W. Li, L. Liu, R. Huang, M. Abshinova, Z.H. Yang, C.B. Tang, P.K. Tan, C.R. Deng, S. Matitsine, Int. Mater. Rev. 58, 203 (2013)

    Article  Google Scholar 

  2. X. Li, H. Yi, J. Zhang, J. Feng, F. Li, D. Xue, H. Zhang, Y. Peng, N.J. Mellors, J. Nanopart. Res. 15, 1472 (2013)

    Article  ADS  Google Scholar 

  3. Y.C. Qing, W.C. Zhou, F. Luo, D.M. Zhu, Carbon 48, 4074 (2010)

    Article  Google Scholar 

  4. Y. Zou, J. Wang, B. Zhang, X.G. Su, S.Q. Huo, S. Yang, W. Chen, X. Wang, J.P. Wang, J. Mater. Sci. Mater. Electron. 30, 10321 (2019)

    Article  Google Scholar 

  5. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008)

    Article  ADS  Google Scholar 

  6. A.K. Geim, Science 324, 1530 (2009)

    Article  ADS  Google Scholar 

  7. S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006)

    Article  ADS  Google Scholar 

  8. S. Hosseinabadi, Z. Sheykhifard, S. M. Mohseni, M. Kokabi, L. Jamilpanah, M. Hajali and M. Jafari, Mater. Chem. Phys. 260, 124155 (2020).

  9. S. Qilong, S. Lei, C. Yingying, Y. Wei, X. Sijun, J. Tao, Y. Guoqiu, Ceram. Int. 45, 18298 (2019)

    Article  Google Scholar 

  10. X. Gao, Y. Wang, Q. Wang, X. Wu, W. Zhang, M. Zong, L. Zhang, Ceram. Int. 45, 3325 (2019)

    Article  Google Scholar 

  11. X. Wang, Y. Lu, T. Zhu, S. Chang and W. Wang, Chem. Eng. J. 388, 124317 (2020).

  12. H. Lv, G. Ji, X. Liang, H. Zhang, Y. Du, J. Mater. Chem. C 3, 5056 (2015)

    Article  Google Scholar 

  13. T. Wang, Z. Liu, M. Lu, B. Wen, Q. Ouyang, Y. Chen, C. Zhu, P. Gao, C. Li, M. Cao and L. Qi, J. Appl. Phys. 113, 024314.1 (2013).

  14. S. Yang, D.W. Xu, P. Chen, H.F. Qiu, X. Guo, J. Mater. Sci. Mater. Electron. 29, 19443 (2018)

    Article  Google Scholar 

  15. K. Xu, W.H. Ma, Y.A. Liu, Y.F. Bai, J.W. Xue, Y. Liu, G.Z. Zhao, Y.Q. Liu, J. Mater. Sci. Mater. Electron. 30, 9133 (2019)

    Article  Google Scholar 

  16. S. Li, Y. Huang, D. Ling, N. Zhang, M. Zong, X. Qin, P. Liu, J. Colloid Interface Sci. 544, 188 (2019)

    Article  ADS  Google Scholar 

  17. O. Khani, M.Z. Shoushtaria, K. Ackland, P. Stamenov, J. Magn. Magn. Mater. 428, 28 (2017)

    Article  ADS  Google Scholar 

  18. F. Wen, W. Zuo, H. Yi, N. Wang, L. Qiao, F. Li, Phys. B 404, 3567 (2009)

    Article  ADS  Google Scholar 

  19. C.-C. Chen, W.-F. Liang, Y.-H. Nien, H.-K. Liu, R.-B. Yang, Mater. Res. Bull. 96, 81 (2017)

    Article  Google Scholar 

  20. C. Liu, Y. Duan, J. Cai, X. Li, D. Zhang, J. Gao and Y. Che, Mater. Res. Express. 6, 106114 (2019).

  21. Z. Zhu, X. Sun, H. Xue, H. Guo, X. Fan, X. Pan, J. He, J. Mater. Chem. C 2, 6582 (2014)

    Article  Google Scholar 

  22. A. Kausar, Polym.-Plast. Technol. Eng. 57, 346 (2017)

    Article  Google Scholar 

  23. N. Vu-Bac, T. Lahmer, X. Zhuang, T. Nguyen-Thoi, T. Rabczuk, Adv Eng Softw 100, 19 (2016)

    Article  Google Scholar 

  24. V. Mishra, S. Puthucheri, D. Singh, IEEE Trans. Magn. 53, 1 (2017)

    Google Scholar 

  25. J.L. Wallace, IEEE Trans. Magn. 29, 4209 (1993)

    Article  ADS  Google Scholar 

  26. A.N. Lagarkov, A.K. Sarychev, Phys. Rev. B 53, 6318 (1996)

    Article  ADS  Google Scholar 

  27. C.W. Nan, Prog. Mater Sci. 37, 1 (1993)

    Article  Google Scholar 

  28. J.P. Calame, J. Appl. Phys. 97, 5945 (2005)

    Article  Google Scholar 

  29. H. Lv, G. Ji, W. Liu, H. Zhang, Y. Du, J. Mater. Chem. C 3, 10232 (2015)

    Article  Google Scholar 

  30. W. Xu, G.-S. Wang, P.-G. Yin, Carbon 139, 759 (2018)

    Article  Google Scholar 

  31. H. Qiu, X. Zhu, P. Chen, N. Li and X. Zhu, J. Alloys Compd. 868, 159260 (2021).

  32. M. Dai, Y. Zhai, L. Wu, Y. Zhang, Carbon 152, 661 (2019)

    Article  Google Scholar 

  33. Y.C. Qing, D.D. Min, Y.Y. Zhou, F. Luo, W.C. Zhou, Carbon 86, 98 (2015)

    Article  Google Scholar 

  34. F. Wen, H. Yi, L. Qiao, H. Zheng, D. Zhou and F. Li, Appl. Phys. Lett. 92, 042507 (2008).

  35. X. F. Zhang, X. L. Dong, H. Huang, Y. Y. Liu, W. N. Wang, X. G. Zhu, B. Lv, J. P. Lei and C. G. Lee, Appl. Phys. Lett. 89, 053115 (2006).

  36. G. Korneva, H. Ye, Y. Gogotsi, D. Halverson, G. Friedman, J.C. Bradley, K.G. Kornev, Nano Lett. 5, 879 (2005)

    Article  ADS  Google Scholar 

  37. Z.G. Fang, X.M. Cao, C.S. Li, H.T. Zhang, J.S. Zhang, H.Y. Zhang, Carbon 44, 3368 (2006)

    Article  Google Scholar 

  38. J. Fang, T. Liu, Z. Chen, Y. Wang, W. Wei, X. Yue, Z. Jiang, Nanoscale 8, 8899 (2016)

    Article  ADS  Google Scholar 

  39. X. Zhu, H. Qiu, P. Chen, G. Chen, W. Min, Carbon 173, 1 (2021)

    Article  Google Scholar 

  40. R. Rafiee, M.H. Sabour, A. Nikfarjam, M. Taheri, J. Electron. Mater. 43, 3477 (2014)

    Article  ADS  Google Scholar 

  41. B. Zhao, G. Shao, B. Fan, W. Zhao, Z. Rui, PCCP 17, 2531 (2015)

    Article  ADS  Google Scholar 

  42. H. Lv, X. Liang, G. Ji, H. Zhang, Y. Du, A.C.S. Appl, Mater. Interfaces 7, 9776 (2015)

    Article  Google Scholar 

  43. F. Yan, S. Zhang, X. Zhang, C.Y. Li, C.L. Zhu, X.T. Zhang, Y.J. Chen, J. Mater. Chem. C 6, 12781 (2018)

    Article  Google Scholar 

  44. G. Ma, Y. Zeng, X. Yang, Y. Liu, Y. Duan, J. Mater. Sci. Mater. Electron. 31, 8627 (2020)

    Article  Google Scholar 

  45. S. Gao, S.H. Yang, H.Y. Wang, G.S. Wang, P.G. Yin, Carbon 162, 438 (2020)

    Article  Google Scholar 

  46. L. Lyu, F. Wang, B. Li, X. Zhang, J. Qiao, Y. Yang, J. Liu, J. Colloid Interface Sci. 586, 613 (2021)

    Article  ADS  Google Scholar 

  47. Y. Li, S. Li, T. Zhang, L.L. Shi, S.T. Liu, Y. Zhao, J. Alloys Compd. 792, 424 (2019)

    Article  Google Scholar 

  48. H. Xu, X. Yin, M. Zhu, M. Han, Z. Hou, X. Li, L. Zhang, L. Cheng, A.C.S. Appl, Mater. Interfaces 9, 6332 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Yubin Chen for help.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by SW, XH, and WZ. The first draft of the manuscript was written by SW, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xuegong Huang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Huang, X. & Zhang, W. Preparation of graphene/flaky carbonyl iron/polyurethane foam composites and research on their microwave absorption properties. Appl. Phys. A 127, 742 (2021). https://doi.org/10.1007/s00339-021-04894-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04894-y

Keywords

Navigation