Skip to main content
Log in

Photothermal effect of graphene/polymer smart nanocomposites under NIR stimuli

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Many studies have shown that a low mass loading graphene nanosheets (GNSs) in a polymer matrix can provide the nanocomposite with high photothermal conversion efficiency in the near-infrared (NIR) region. However, how to accurately control the photothermal effect of graphene/polymer smart nanocomposites is still a key to its application in biomedicine, micromechanical systems and other fields. Aiming to describe the photothermal effect and indicate the photothermal conversion process, a generalized driving force induced photothermal conversion is introduced based on an energy balance relation modified by Maxwell effective medium theory. The effects of GNSs’ size and mass concentration, light intensity of NIR irradiation and film thickness of GNSs/polymer nanocomposites on the photothermal conversion are all discussed in this paper. Some critical values (such as GNSs’ size and mass concentration, GNSs/polymer nanocomposites film thickness) of the photothermal conversion are predicted, and their influence mechanisms on photothermal conversion are also clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. K. Hu, D.D. Kulkarni, I. Choi, V.V. Tsukruk, Graphene-polymer nanocomposites for structural and functional applications. Prog. Polym. Sci. 39(11), 1934–1972 (2014)

    Article  Google Scholar 

  2. T.K. Das, S. Prusty (2013) Graphene-based polymer composites and their applications. Polym. Plast. Technol. Eng. 52(4): 319–331.

  3. M.D. Lima, L. Na, J.D.A. Monica et al., Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Science 338(6109), 928–932 (2012)

    Article  ADS  Google Scholar 

  4. M. Boyvat, C. Hafner, J. Ceuthoid et al., (2014) Wireless control and selection of forces and torques-towards wireless engines. Sci. Rep. 4, 5681-1-8.

  5. X. Sun, W. Wang, L. Qiu, W. Guo, Y. Yu, H. Peng, Unusual reversible photomechanical actuation in polymer/nanotube composites. Angew. Chem. Int. Ed. 51(34), 8520–8524 (2012)

    Article  Google Scholar 

  6. M. Silva, N.M. Alves, M.C. Paiva, Graphene-polymer nanocomposites for biomedical applications. Polym. Adv. Technol. 29(2), 687–700 (2018)

    Article  Google Scholar 

  7. K. Yang, L. Feng, Z. Liu, Stimuli responsive drug delivery systems based on nano-graphene for cancer therapy. Adv. Drug Deliver. Rev. 105, 228–241 (2016)

    Article  Google Scholar 

  8. A. Ol, J.J. Savchuk, J. Carvajal, M.A. Massons, F. Díaz, Determination of photothermal conversion efficiency of graphene and graphene oxide through an integrating sphere method. Carbon 103, 134–141 (2016)

    Article  Google Scholar 

  9. M. Jablan, H. Buljan, M.Soljačić, Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80(24), 245435-1-7 (2009)

  10. F.H.L. Koppens, D.E. Chang, F.J.G. Abajo, Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 11(8), 3370–3377 (2011)

    Article  ADS  Google Scholar 

  11. L.M. Zhang, J.G. Xia, Q.H. Zhao, L.W. Liu, Z.J. Zhang, Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6(4), 537–544 (2010)

    Article  Google Scholar 

  12. C. Wang, J. Li, C. Amatore, Y. Chen, H. Jiang, X.M. Wang, Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells. Angew. Chem. Int. Ed. 50(49), 11644–11648 (2011)

    Article  Google Scholar 

  13. A. Sahu, W. Choi, J.H. Lee, G. Tae, Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy. Biomaterials 34(26), 6239–6248 (2013)

    Article  Google Scholar 

  14. W. Miao, G. Shim, S. Lee, Y.K. Oh, Structure-dependent photothermal anticancer effects of carbon-based photoresponsive nanomaterials. Biomaterials 35(13), 4058–4065 (2014)

    Article  Google Scholar 

  15. M.C. Wu, A.R. Deokar, J.H. Liao, P.Y. Shih, Y.C. Ling, Graphene-based photothermal agent for rapid and effective killing of bacteria. ACS Nano 7(2), 1281–1290 (2013)

    Article  Google Scholar 

  16. L. Wang, F. Li, H. Liu, W. Jiang, D. Niu, R. Li, L. Yin, Y. Shi, B. Chen, Graphene-based bioinspired compound eyes for programmable focusing and remote actuation. ACS Appl. Mater. Interfaces 7(38), 21416–21422 (2015)

    Article  Google Scholar 

  17. D. Meng, S. Yang, L. Guo, J. Ge, Y. Huang, C.W. Bielawski, J. Geng, The enhanced photothermal effect of graphene/conjugated polymer composites: photoinduced energy transfer and applications in photocontrolled switches. Chem. Commun. 50(92), 14345–14348 (2014)

    Article  Google Scholar 

  18. J. Loomis, X. Fan, F. Khosravi, P. Xu, M. Fletcher, R.W. Cohn, B. Panchapakesan, Graphene/elastomer composite-based photo-thermal nanopositioners. Sci. Rep. 3: 1900-1-10 (2013).

  19. S. Wu, J. Li, G. Zhang, Y. Yao, G. Li, R. Sun, C. Wong, Ultrafast self-healing nanocomposites via infrared laser and their application in flexible electronics. ACS Appl. Mater. Interfaces 9(3), 3040–3049 (2017)

    Article  Google Scholar 

  20. W. Jiang, D. Niu, H. Liu et al., Photoresponsive soft-robotic platform: biomimetic fabrication and remote actuation. Adv. Funct. Mater. 24(48), 7598–7604 (2014)

    Article  Google Scholar 

  21. X. Wang, N. Jiao, S. Tung, L. Liu, Photoresponsive graphene composite bilayer actuator for soft robots. ACS Appl. Mater. Interfaces 11(33), 30290–30299 (2019)

    Article  Google Scholar 

  22. Y.Y. Gao, B. Han, W.Y. Zhao, Z.C. Ma, Y.S. Yu, H.B. Sun, Light-responsive actuators based on graphene. Front. Chem. 7, 506-1-5 (2019).

  23. B. Han, Y.L. Zhang, L. Zhu, Y. Li, et al., Plasmonic‐assisted graphene oxide artificial muscles. Adv. Mater. 31(5), 1806386–1–7 (2019).

  24. A.G. D’Aloia, F. Marra, A. Tamburrano, G. De Bellis, M.S. Sarto, Electromagnetic absorbing properties of graphene–polymer composite shields. Carbon 73, 175–184 (2014)

    Article  Google Scholar 

  25. H.H. Richardson, M.T. Carlson, P.J. Tandler, P. Hernandez, A.O. Govorov, Nano Lett. 9(3), 1139–1146 (2009)

    Article  ADS  Google Scholar 

  26. D.K. Kim, M.S. Amin, S. Eilorai, S.H. Lee, Y. Koseoglu, M. Zahn, M.Muhammed, Energy absorption of superparamagnetic iron oxide nanoparticles by microwave irradiation. J. Appl. Phys. 97(10), 10J510-1-3 (2005).

  27. C.G. Granqvist, O. Hunderi, Optical properties of Ag-Si Cermet films: A comparison of effective-medium theories Phys. Rev. B 18(6), 2897–2906 (1978)

    Article  Google Scholar 

  28. N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia, B. Zhang, B. Tang, M. Chan, J.K. Kim, Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26(31), 5480–5487 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (12102314, 51974217) and the Fundamental Research Funds for the Central Universities (Grant No. WUT: 2019IA003 and 2018IB007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Zhang, H., Li, F. et al. Photothermal effect of graphene/polymer smart nanocomposites under NIR stimuli. Appl. Phys. A 127, 741 (2021). https://doi.org/10.1007/s00339-021-04900-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04900-3

Keywords

Navigation