Skip to main content
Log in

Effect of working pressure and post-annealing on structural, optical and electrical properties of p-type NiO thin films produced by RF magnetron sputtering technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nickel oxide (NiO) films were deposited on glass and silicon substrates using a Ni target by radio-frequency (RF) sputtering at various working pressure ranging from 5 to 20 mTorr. The films were annealed for 2 h at 400 °C in the air ambient. The effect of working pressure on structural, optical and electrical properties of NiO films was investigated in detail. The deposition rate of the films gradually increased with decreasing working pressure. The X-ray diffraction (XRD) presented that the crystal quality and the average crystallite size of annealed films increased with decreasing working pressure. The X-ray photoelectron spectroscopy (XPS) confirmed the presence of Ni2+ and Ni3+ ions along with the main peak and satellite peaks in the NiO films. Raman spectroscopy exhibited the one-phonon and two-phonon vibrations modes corresponding to Ni–O bond. UV–Visible analyses showed that annealed NiO thin films have higher transmittance than deposited ones. The band gap of the films increased from 3.33 to 3.52 eV with decreasing working pressure and further increased after the annealing process. The electrical properties were affected by the varying crystallinity and lattice defects depending on the deposition condition. All annealed NiO films exhibited p-type conductivity. The lowest resistivity (4.2 Ω.cm) was obtained from the annealed film after deposition at 5 mTorr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

The experimental studies were carried out within Eastern Anatolia High Technology Application and Research Center (DAYTAM). The data are available from the author (Fatih Şenaslan; fsenaslan@gumushane.edu.tr) upon reasonable request.

References

  1. R. Sharma, A.D. Acharya, S.B. Shrivastava, T. Shripathi, V. Ganesan, Opt. 125, 6751 (2014)

    Google Scholar 

  2. Z. Xuping, Z. Haokang, L. Qing, L. Hongli, IEEE Electron Device Lett. 21, 215 (2000)

    Article  Google Scholar 

  3. P. Yang, J. Wang, X. Zhao, J. Wang, Z. Hu, Q. Huang, L. Yang, Appl. Phys. A 125, 1 (2019)

    Article  Google Scholar 

  4. B. Varghese, M.V. Reddy, Z. Yanwu, C.S. Lit, T.C. Hoong, G.V. Subba Rao, C.H. Sow, Chem. Mater. 20, 3360 (2008)

    Article  Google Scholar 

  5. Y. Zhang, S. Wang, L. Chen, Y. Fang, H. Shen, Z. Du, Org. Electron. 44, 189 (2017)

    Article  Google Scholar 

  6. S.Y. Tsai, M.H. Hon, Y.M. Lu, Solid-State Electron. 63, 37 (2011)

    Article  ADS  Google Scholar 

  7. E. Turgut, Ö. Çoban, S. Sarıtaş, S. Tüzemen, M. Yıldırım, E. Gür, Appl. Surf. Sci. 435, 880 (2018)

    Article  ADS  Google Scholar 

  8. D. Du, Z. Hu, Y. Liu, Y. Deng, J. Liu, J. Alloys Compd. 589, 82 (2014)

    Article  Google Scholar 

  9. M. Predanocy, I. Hotový, M. Čaplovičová, Appl. Surf. Sci. 395, 208 (2017)

    Article  ADS  Google Scholar 

  10. M.S. Jamal, S.A. Shahahmadi, P. Chelvanathan, H.F. Alharbi, M.R. Karim, M.A. Dar, M. Akhtaruzzaman, Results Phys. 14, 102360 (2008)

    Article  Google Scholar 

  11. T. Maruyama, S. Arai, Sol. Energy Mater. Sol. Cells. 30, 257 (1993)

    Article  Google Scholar 

  12. I. Fasaki, A. Koutoulaki, M. Kompitsas, C. Charitidis, Appl. Surf. Sci. 257, 429 (2010)

    Article  ADS  Google Scholar 

  13. I. Porqueras, E. Bertran, Thin Solid Films 398, 41 (2001)

    Article  ADS  Google Scholar 

  14. S. Pereira, A. Gonçalves, N. Correia, J. Pinto, L. Pereira, R. Martins, E. Fortunato, Sol. Energy Mater. Sol. Cells. 120, 109 (2014)

    Article  Google Scholar 

  15. N.R. Aswathy, J. Varghese, R. Vinodkumar, J. Mater. Sci.: Mater. Electron. 31, 16634 (2020)

    Google Scholar 

  16. L. Berkat, L. Cattin, A. Reguig, M. Regragui, J.C. Bernede, Mater. Chem. Phys. 89, 11 (2005)

    Article  Google Scholar 

  17. S. Swann, Phys. Technol. 19, 67 (1988)

    Article  ADS  Google Scholar 

  18. A.A. Ahmed, N. Afzal, M. Devarajan, S. Subramani, Mater. Res. Express 3, 116405 (2016)

    Article  ADS  Google Scholar 

  19. V.R. Buch, A.K. Chawla, S.K. Rawal, Mater. Today: Proc. 3, 1429 (2016)

    Google Scholar 

  20. A.M. Reddy, A.S. Reddy, P.S. Reddy, Vacuum 85, 949 (2011)

    Article  ADS  Google Scholar 

  21. G. Atak, Ö.D. Coşkun, Solid State Ionics 305, 43 (2017)

    Article  Google Scholar 

  22. L. Ai, G. Fang, L. Yuan, N. Liu, M. Wang, C. Li, X. Zhao, Appl. Surf. Sci. 254, 2401 (2008)

    Article  ADS  Google Scholar 

  23. K. Sato, S. Kim, S. Komuro, X. Zhao, Jpn. J. Appl. Phys. 55, 06GJ10 (2016)

    Article  Google Scholar 

  24. H.L. Chen, Y.M. Lu, W.S. Hwang, Surf. Coat. Technol. 198, 138 (2005)

    Article  Google Scholar 

  25. S. Wu, H. Chen, X. Du, Z. Liu, Spectrosc. Lett. 49, 514 (2016)

    Article  ADS  Google Scholar 

  26. K.Y. Chan, B.S. Teo, J. Mater. Sci. 40, 5971 (2005)

    Article  ADS  Google Scholar 

  27. J.L. Yang, Y.S. Lai, J.S. Chen, Thin Solid Films 488, 242 (2005)

    Article  ADS  Google Scholar 

  28. Y. Zhang, Y. Shen, X. Xie, W. Du, L. Kang, Y. Wang, B. Wang, Mater. Des. 196, 109111 (2020)

    Article  Google Scholar 

  29. K.S. Usha, R. Sivakumar, C. Sanjeeviraja, V. Sathe, V. Ganesan, T.Y. Wang, RSC Adv. 6, 79668 (2016)

    Article  ADS  Google Scholar 

  30. P. Salunkhe, M. A. AV, D. Kekuda, , Mater. Res. Express. 7, 016427 (2020)

    Article  ADS  Google Scholar 

  31. T. Potlog, L. Ghimpu, V. Suman, A. Pantazi, M. Enachescu, Mater. Res. Express 6, 096440 (2019)

    Article  ADS  Google Scholar 

  32. E. Aytan, B. Debnath, F. Kargar, Y. Barlas, M.M. Lacerda, J.X. Li, A.A. Balandin, Appl. Phys. Lett. 111, 252402 (2017)

    Article  ADS  Google Scholar 

  33. G. George, S. Anandhan, RSC Adv. 4, 62009 (2014)

    Article  ADS  Google Scholar 

  34. P. Ravikumar, B. Kisan, A. Perumal, AIP Adv. 5, 087116 (2015)

    Article  ADS  Google Scholar 

  35. S. Oh, Y.S. Park, P.J. Ko, N.H. Kim, J. Nanosci. Nanotechnol. 18, 6213 (2018)

    Article  Google Scholar 

  36. S.T. Akinkuade, W.E. Meyer, J.M. Nel, Physica B: Condensed Matter. 575, 411694 (2019)

    Article  Google Scholar 

  37. J.D. Hwang, T.H. Ho, Mater. Sci. Semicond. Process. 71, 396 (2017)

    Article  Google Scholar 

Download references

Funding

This study was financially supported by Ataturk University, Coordinatorship of Scientific Research Projects (Project Code: FDK-2019–7473).

Author information

Authors and Affiliations

Authors

Contributions

FŞ: methodology, data analysis, investigation, writing − original draft, visualization. MT: writing—review and editing. AÇ: conceptualization, project administration, writing—review and editing.

Corresponding author

Correspondence to Fatih Şenaslan.

Ethics declarations

Conflicts of interest

The authors declare that they do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şenaslan, F., Taşdemir, M. & Çelik, A. Effect of working pressure and post-annealing on structural, optical and electrical properties of p-type NiO thin films produced by RF magnetron sputtering technique. Appl. Phys. A 127, 739 (2021). https://doi.org/10.1007/s00339-021-04901-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04901-2

Keywords

Navigation