Skip to main content

Advertisement

Log in

Study of structural, optical and magnetic properties of 3D and quasi-2D iron-based lead-free perovskites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In recent years, three-dimensional hybrid perovskites (CH3NH3PbX3) with X = Cl, Br and I, due to their simple production methods and encouraging energy conversion efficiency in perovskite-based solar cells, have raised great attention. One of the main limitations in the development and application of these structures is the toxicity of lead. Investigation of the magnetic and optical properties including linear and nonlinear properties of lead-free organic–inorganic perovskites seems to be necessary. The main focus of this work is the iron substitutions at the lead site. Three-dimensional CH3NH3FeCl3 organic–inorganic perovskite and two-dimensional hybrids, (CH3(CH2)3NH3)2FeCl4 and (C6H5(CH2)2NH3)2FeCl4, were prepared. Firstly, we describe the synthesis method, crystal structure and magnetic behavior of the iron-based lead-free perovskites. Optical properties including linear and nonlinear behavior of the iron halide perovskites are also investigated. The results indicate the presence of iron oxide phase between the layers of (PEA)2FeCl4 perovskite structure and a superparamagnetic behavior with weak magnetization. Through the Z-scan approach, we observed high nonlinear optical response and high nonlinear refraction. The organic cation effect on the nonlinear absorption and nonlinear refraction is studied experimentally. The remarkable third-order nonlinear thermo-optical properties of quasi-2D/3D iron-based lead-free perovskites suggest the potential of these materials for photonics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H.J. Snaith, J. Phys. Chem. Lett. 4, 3623 (2013)

    Article  Google Scholar 

  2. M.A. Green, A. Ho-Baillie, H.J. Snaith, Nat. Photon. 8, 506 (2014)

    Article  ADS  Google Scholar 

  3. J. Burschka, N. Pellet, N.S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Nature 499, 316 (2013)

    Article  ADS  Google Scholar 

  4. S. Mirershadi, S.F. Sattari, S. Golghasemi Sorkhabi, A.M. Shokri, J. Phys. Chem. C 123, 12423 (2019).

  5. A. Jaffe, Y. Lin, C.M. Beavers, J. Voss, W.L. Mao, H.I. Karunadasa, ACS Cent. Sci. 2, 201 (2016)

    Article  Google Scholar 

  6. S. Mirershadi, F. Sattari, M.M. Saridaragh, Sol. Energy Mater. Sol. Cells 186, 365 (2018)

    Article  Google Scholar 

  7. X. Tian, Y. Zhang, R. Zheng, D. Wei, J. Liu, Sustain. Energy Fuels 4, 2087 (2020)

    Article  Google Scholar 

  8. G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, M.K. Nazeeruddin, Nat. Commun. 8, 1 (2017)

    Article  Google Scholar 

  9. K. Wang, C. Wu, Y. Jiang, D. Yang, K. Wang, S. Priya, Sci. Adv. 5, 241 (2019)

    Google Scholar 

  10. K. Tanaka, T. Takahashi, T. Kondo, T. Umebayashi, K. Asai, K. Ema, Phys. Rev. B 71, 045312 (2005)

    Article  ADS  Google Scholar 

  11. J.C. Blancon, A.V. Stier, H. Tsai, W. Nie, C.C. Stoumpos, B. Traore, J. Kono, Nat. Commun. 9, 1 (2018)

    Article  Google Scholar 

  12. L. Etgar, Energy Environ. Sci. 11, 234 (2018)

    Article  Google Scholar 

  13. Z. Haitham, J. Sihem, Phys. E 113, 181 (2019)

    Article  Google Scholar 

  14. L. Qiu, L.K. Ono, Y. Qi, Mater. Today Energy 7, 169 (2018)

    Article  Google Scholar 

  15. Z. Xiao, W. Meng, J. Wang, D.B. Mitzi, Y. Yan, Mater. Horiz. 4, 206 (2017)

    Article  Google Scholar 

  16. Y.Y. Sun, J. Shi, J. Lian, W. Gao, M.L. Agiorgousis, P. Zhang, S. Zhang, Nanoscale 8, 6284 (2018)

    Article  ADS  Google Scholar 

  17. M. Chen, M.G. Ju, H.F. Garces, A.D. Carl, L.K. Ono, Z. Hawash, D. Pacifici, Nat. Commun. 10, 1 (2019)

    Article  Google Scholar 

  18. L.K. Ono, E.J. Juarez-Perez, Y. Qi, A.C.S. Appl, Mater. Interfaces 9, 30197 (2017)

    Article  Google Scholar 

  19. L.A. Frolova, D.V. Anokhin, K.L. Gerasimov, N.N. Dremova, P.A. Troshin, J. Phys. Chem. Lett. 7, 4353 (2016)

    Article  Google Scholar 

  20. S. Chatterjee, A.J. Pal, J. Mater. Chem. A 6, 3793 (2018)

    Article  Google Scholar 

  21. A. Aisha, A. Naureen, A. Polyakov, P. Rudolf, APL. Mater. 6, 114206 (2018)

    Article  ADS  Google Scholar 

  22. G. Alvarez, A. Conde-Gallardo, H. Montiel, R. Zamorano, J. Magn. Magn. Mater. 401, 196 (2016)

    Article  ADS  Google Scholar 

  23. Z.G. Mu, L. Zhang, X. Li, J.F. Hu, J. Rare Earths 29, 374 (2011)

    Article  Google Scholar 

  24. H. Tavakkoli, A. Ghaemi, M. Mostofizadeh, Int J. Sci Res. Knowl. 2, 340 (2014)

    Google Scholar 

  25. H. Shen, J. Li, H. Wang, J. Ma, J. Wang, H. Luo, D. Li, J. Phys. Chem. Lett. 10, 7 (2019)

    Article  Google Scholar 

  26. A. Ferrando, J. P. Martínez Pastor, I. Suárez, J. Phys. Chem. Lett. 9, 5612 (2018)

  27. J. Xu, X. Li, J. Xiong, C. Yuan, S. Semin, T. Rasing, X.H. Bu, Adv. Mater. 32, 1806736 (2019)

    Article  Google Scholar 

  28. W. Shen, J. Chen, J. Wu, X. Li, H. Zeng, ACS Photon 8, 113 (2021)

    Article  Google Scholar 

  29. L. Guo, H. Liu, Y. Dai, S. Ouyang, J. Phys. Chem. Solids 68, 1663 (2007)

    Article  ADS  Google Scholar 

  30. J. Yan. W. Qiu, G. Wu, P. Heremans, H. Chen, J. Mater. Chem. A, 6, 11063 (2018).

  31. S. Mirershadi, F. Sattari, J. Mater. Sci. Mater. Electron. 32, 12939 (2021)

    Article  Google Scholar 

  32. R.D. Waldron, Phys. Rev. 15, 1727 (1995)

    Google Scholar 

  33. D.L. Pavia, G.M. Lampman, G.S. Kriz, J.A. Vyvyan, Introduction to Spectroscopy, 5th edn. (Cengage Learning, Boston, MA, USA, 2015)

    Google Scholar 

  34. N. Kitazawa, Y. Watanabe, J Phys Chem Solids 71, 797 (2010)

    Article  ADS  Google Scholar 

  35. N. Kitazawa, M. Aono, Y. Thin Solid Films 518, 3199 (2010)

    Article  ADS  Google Scholar 

  36. S. Jangra, S. Sanghi, A. Agarwal, Appl. Phys. A 127, 534 (2021)

    Article  ADS  Google Scholar 

  37. S. Gowreesan, A. Ruban Kumar, Appl. Phys. A, 123, 689 (2017).

  38. M. Shkir, M. Anis, S. Shafik, M.A. Manthrammel, M.A. Sayeed, M.S. Hamdy, S. AlFaify, Phys. E Low Dimens. Syst. Nanostruct 118, 113958 (2020)

    Article  Google Scholar 

  39. Y. Golian, D. Dorranian, Opt. Quantum Electron. 46, 809 (2014)

    Article  Google Scholar 

  40. M. Sheik-bahae, A.A. Said, E.W. Van Stryland, Opt. Lett. 14, 955 (1989)

    Article  ADS  Google Scholar 

  41. K. Shinkawa, K. Ogusu, Opt. Express 16, 18230 (2008)

    Article  ADS  Google Scholar 

  42. S. Mirershadi, F. Sattari, A. Alipour, S.Z. Mortazavi, Front. Phys. 8, 96 (2020)

    Article  Google Scholar 

  43. S. Bayesteh, S.Z. Mortazavi, A. Reyhani, J. Phys. D Appl. Phys. 51, 195302 (2018)

    Article  ADS  Google Scholar 

  44. I. Suárez, M. Vallés-Pelarda, A.F. Gualdrón-Reyes, I. Mora-Seró, A. Ferrando, H. Michinel, J.R. Salgueiro, J.P. Martínez Pastor, APL Mater., 7, 041106 (2019).

  45. S. Mirershadi, S. Ahmadi-Kandjani, A. Zawadzka, H. Rouhbakhsh, B. Sahraoui, Chem. Phys. Lett. 674, 7 (2016)

    Article  ADS  Google Scholar 

  46. B.S. Kalanoor, L. Gouda, R. Gottesman, S. Tirosh, E. Haltzi, A. Zaban, Y.R. Tischler, ACS Photon. 3, 361 (2016)

    Article  Google Scholar 

  47. J. Yi, L. Miao, J. Li, W. Hu, C. Zhao, S. Wen, Opt. Mater. Express 7, 3894 (2017)

    Article  ADS  Google Scholar 

  48. H. Aleali, L. Sarkhosh, M. Eslamifar, R. Karimzadeh, N. Mansour, Jpn. J. Appl. Phys. 49, 085002 (2010)

    Article  ADS  Google Scholar 

  49. Z. Mao, L. Qiao, F. He, Y. Liao, C. Wang, Y. Cheng, Chin. Opt. Lett. 7, 949 (2009)

    Article  Google Scholar 

  50. J. Zamir Anvari, R. Karimzadeh, N. Mansour, J. Opt. 12, 035212 (2010).

Download references

Author information

Authors and Affiliations

Authors

Contributions

FS and SM (Soghra Mirershadi) contributed to the conceptualization; FS contributed to the methodology; FE contributed to the software; FS, SM (Soghra Mirershadi) and SM (Sharareh Mirzaee) were involved in the validation; SM (Soghra Mirershadi) was involved in the formal analysis; FS contributed to the investigation; FS was involved in the writing—original draft preparation; SM (Soghra Mirershadi) was involved in the writing—review and editing; FS contributed to the project administration. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Soghra Mirershadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ershadi, F., Mirershadi, S., Sattari, F. et al. Study of structural, optical and magnetic properties of 3D and quasi-2D iron-based lead-free perovskites. Appl. Phys. A 127, 736 (2021). https://doi.org/10.1007/s00339-021-04881-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04881-3

Keywords

Navigation