Skip to main content
Log in

Using Applied Ontology to Saturate Semantic Relations

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The paper addresses the issue of filling the gaps in the semantic library based on the distributional semantics of the terms of its thesaurus and the ontology relations. The goal of the study is to fully reflect the actual structure of relations between mathematical subject domains. This is done through identifying context-sensitive semantic relations, and with the use of an algorithm that is based on the word2vec feedforward neural networks. The understanding of the query is analyzed after preliminary processing of set of articles and metadata saturation. The proposed procedure helps to improve the work with the full-text index and, as a result, improves the quality of search in the library. Using a full-text index of a digital semantic library as an example, we demonstrate the process of filling gaps by saturating the semantic relations of the ontology of mathematical subject domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

REFERENCES

  1. D. Oberle, N. Guarino, and S. Staab, ‘‘What is an ontology?,’’ in Handbook on Ontologies, Ed. by S. Staab (Springer, Berlin, 2009).

    Google Scholar 

  2. Y. Zagorulko, O. Borovikova, and G. Zagorulko, ‘‘Development of ontologies of scientific subject domains using ontology design patterns,’’ Commun. Comput. Inform. Sci. 822, 141–156 (2018). https://doi.org/10.1007/978-3-319-96553-6-11

    Article  Google Scholar 

  3. A. B. Antopol’skij, N. E. Kalenov, V. A. Serebryakov, and A. N. Sotnikov, ‘‘Common digital space of scientific knowledge,’’ Vestn. Ross. Akad. Nauk 89, 728–735 (2019). https://doi.org/10.31857/S0869-5873897728-735

    Article  Google Scholar 

  4. GOST (State Standard) No. 15971-90, Information processing systems, Terms and definitions. http://docs.cntd.ru/document/gost-15971-90. Accessed 2021.

  5. GOST (State Standard) No. P 7.0.91-2015, ISO 25964-1:2011, System of standards on information, librarianship and publishing. Thesauri for information retrieval. http://docs.cntd.ru/document/1200129056. Accessed 2021.

  6. Yu. A. Shrejder, ‘‘Thesauri in computer science and theoretical semantics,’’ Nauch.-Tekh. Inform. 2 (3), 21–24 (1971).

    Google Scholar 

  7. V. C. Storey, ‘‘Understanding semantic relationships,’’ VLDB J. 2, 455–488 (1993). https://doi.org/10.1007/BF01263048

    Article  Google Scholar 

  8. T. L. Teorey, D. Yang, and J. P. Fry, ‘‘A logical design methodology for relational databases using the extended entity-relationship model,’’ Comput. Surv. 18, 197–221 (1986).

    Article  Google Scholar 

  9. D. Price, ‘‘Networks of scientific papers,’’ Science (Washington, DC, U. S.) 149 (3683), 510–515 (1965). https://doi.org/10.1126/science.149.3683.510

    Article  Google Scholar 

  10. T. Mikolov, W. T. Yih, and C. Zweig, ‘‘Linguistic regularities in continuous space word representations,’’ in Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies NAACL HLT, Atlanta, Georgia, June 9–14, 2013.

  11. Q. Le and T. Mikolov, ‘‘Distributed representations of sentences and document,’’ in Proceedings of the International Conference on Machine Learning, 2014, pp. 1188–1196.

  12. Z. Harris, ‘‘Distributional structure,’’ Word 10 (23), 146–162 (1954). https://doi.org/10.1080/00437956.1954.11659520

    Article  Google Scholar 

  13. O. Ataeva, V. Serebryakov, and N. Tuchkova, ‘‘Ontological approach: Knowledge representation and knowledge extraction,’’ Lobachevskii J. Math. 41 (10), 1938–1948 (2020). https://doi.org/10.1134/S1995080220100030

    Article  MATH  Google Scholar 

  14. O. Ataeva, V. Serebryakov, and N. Tuchkova, ‘‘Query expansion method application for searching in mathematical subject domains,’’ CEUR Workshop Proc. 2543, 38–48 (2020). http://ceur-ws.org/Vol-2543/rpaper04.pdf urn:nbn:de:0074-2543-4. Accessed 2021.

  15. O. M. Ataeva, V. A. Serebryakov, and N. P. Tuchkova, ‘‘Mathematical physics branches: Identifying mixed type equations,’’ Lobachevskii J. Math. 40 (7), 876–886 (2019).

    Article  Google Scholar 

  16. O. M. Ataeva, ‘‘LibMet semantic library information model,’’ Program. Produkty Sist. 4, 36–44 (2016).

    Google Scholar 

  17. C. Wang, L. Cao, and B. Zhou, ‘‘IMedical synonym extraction with concept space models,’’ in Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI’15 (2015), pp. 989–995.

    Google Scholar 

  18. I. K. Polozov and I. A. Volkova, ‘‘Application of Word2vec technology in the task of selecting tonality inverters,’’ Mezhdun. Nauch.-Issled. Zh. 4-1 (94), 36–39 (2020).

  19. I. M. Vinogradov, Mathematical Encyclopedy (Sov. Entsiklopediya, Moscow, 1979) [in Russian].

    Google Scholar 

  20. Mathematical Encyclopedy. https://dic.academic.ru/contents.nsf/enc_mathematics. Accessed 2021.

  21. Encyclopedy World. http://www.encyclopedia.ru. Accessed 2021.

  22. S. Grimm, A. Abecker, J. Völker, and R. Studer, ‘‘Ontologies and the semantic web,’’ in Handbook of Semantic Web Technologies, Ed. by J. Domingue, D. Fensel, and J. A. Hendler (Springer, Berlin, 2011).

    Google Scholar 

  23. C. Klaussner and D. Zhekova, ‘‘Application of Word2vec technology in the task of selecting tonality inverters,’’ in Proceedings of the 2nd Student Research Workshop associated with RANLP, 2011, pp. 109–114.

  24. M. M. K. Hlava, ‘‘The taxobook: History, theories, and concepts of knowledge organization, Part 1 of a 3-part series,’’ Synth. Lect. Inform. Concepts, Retrieval, Serv. 6 (3), 1–80 (2014).

    Article  Google Scholar 

  25. M. M. K. Hlava, ‘‘The taxobook: Principles and practices of building taxonomies, part 2 of a 3-part series,’’ Synth. Lect. Inform. Concepts, Retrieval, Serv. 6 (4), 1–164 (2014).

    Article  Google Scholar 

  26. M. M. K. Hlava, ‘‘The taxobook: Applications, implementation, and integration in search, Part 3 of a 3-part series,’’ Synth. Lect. Inform. Concepts, Retrieval, Serv. 6 (4), 1–56 (2014).

    Article  Google Scholar 

  27. C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information. Retrieval (Cambridge Univ. Press, Cambridge, 2008).

    Book  Google Scholar 

  28. D. Allemang and J. Hendler, Semantic Web for the Working Ontologist: Effective Modeling in RDFS and OWL (Elsevier, Amsterdam, 2011).

    Google Scholar 

Download references

Funding

This work was supported by budget topics of the Ministry of Science and Higher Education of the Russian Federation ‘‘Mathematical methods for data analysis and forecasting’’ and particular by the Russian Foundation for Basic Research, project no. 20-07-00324.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. M. Ataeva, V. A. Serebryakov or N. P. Tuchkova.

Additional information

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ataeva, O.M., Serebryakov, V.A. & Tuchkova, N.P. Using Applied Ontology to Saturate Semantic Relations. Lobachevskii J Math 42, 1776–1785 (2021). https://doi.org/10.1134/S1995080221080059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080221080059

Keywords:

Navigation