Skip to main content
Log in

On Structure of Fundamental Solutions for Coupled Thermoelasticity and Thermal Stationary Conductivity Problems

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider generalized variational models of media with fields of defects and assume that the tensor of free distortions is interpreted as a dilatation associated with changing of temperature. A variational model of coupled thermoelasticity and stationary thermal conductivity is considered. The model is consistent with the thermodynamics and based parameters of the model are identified from the famous thermomechanical parameters. We assume, that gradient properties are determined by scale parameters which are defined by both mechanical and temperature multiscale effects. The analysis of the boundary value problems is given, and the structure of the fundamental solutions are studied. The fundamental solutions are constructed on the based of generalized Papkovich–Neuber representation using the radial multiplies and are written explicitly in analytical form. It is shown that characteristic roots for the coupled model are satisfied to the algebraic equation of the third order and strong depend on the additional parameters of the model, which describe the coupled effects. As a particular, it is shown that pure oscillation modes can be appear for the temperature, that show the possibility of the thermal waveguide and dynamic instability effects due to coupled effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

REFERENCES

  1. S. A. Lurie, P. A. Belov, and D. B. Volkov-Bogorodskii, ‘‘Variational models of coupled gradient thermoelasticity and thermal conductivity,’’ Mater. Phys. Mech. 42, 564–581 (2019).

    Google Scholar 

  2. L. Y. Bahar and R. B. Hetnarski, ‘‘State space approach to thermoelasticity,’’ J. Therm. Stress. 1, 135–145 (1978).

    Article  Google Scholar 

  3. H. H. Sherief and K. Helmy, ‘‘A two dimensional generalized thermoelasticity problem for a half-space,’’ J. Therm. Stress. 22, 897–910 (1999).

    Article  MathSciNet  Google Scholar 

  4. H. H. Sherief, ‘‘State space formulation for generalized thermoelasticity with one relaxation time including heat sources,’’ J. Therm. Stress. 16, 163–180 (1993).

    Article  MathSciNet  Google Scholar 

  5. P. A. Belov and S. A. Lurie, ‘‘Ideal nonsymmetric 4D-medium as a model of invertible dynamic thermoelasticity,’’ Mech. Solids 47, 580–590 (2012).

    Article  Google Scholar 

  6. S. A. Lurie and P. A. Belov, ‘‘Theory of space time dissipative elasticity and scale effects,’’ Nanoscale Syst.: Math. Model. Theory 2, 166–178 (2013).

    MATH  Google Scholar 

  7. S. A. Lurie and P. A. Belov, ‘‘On the nature of the relaxation time, the Maxwell-Cattaneo and Fourier law in the thermodynamics of a continuous medium, and the scale effects in thermal conductivity,’’ Continuum Mech. Thermodyn., 1–20 (2018).

  8. E. V. Lomakin, S. A. Lurie, P. A. Belov, and L. N. Rabinskiy, ‘‘On the generalized heat conduction laws in the reversible thermodynamics of a continuous medium,’’ Dokl. Phys. 6, 503–507 (2018).

    Article  Google Scholar 

  9. Z. Y. Guo, B. Y. Gao, and M. Wang, ‘‘General heat conduction equations based on the thermomass theory,’’ Front. Heat Mass Transfer 1 013004 (2010).

  10. S. L. Sobolev, ‘‘Transport processes and traveling waves in systems with local nonequilibrium,’’ Sov. Phys. Usp. 34, 217 (1991).

    Article  Google Scholar 

  11. S. L. Sobolev, ‘‘Rapid phase transformation under local non-equilibrium diffusion conditions,’’ Mater. Sci. Technol. 31, 1607–1617 (2015).

    Article  Google Scholar 

  12. S. Forest, J. M. Cardona, and R. Sievert, ‘‘Thermoelasticity of second-grade media,’’ in Continuum Thermomechanics, the Art and Science of Modeling Material Behavior, Ed. by G. A. Maugin, R. Drouot, and F. Sidoroff (Springer, Dordrecht, 2000), pp. 163–176.

    Google Scholar 

  13. E. C. Aifantis, ‘‘Internal Length Gradient (ILG) material mechanics across scales and disciplines,’’ Adv. Appl. Mech. 49, 1–110 (2016).

    Article  Google Scholar 

  14. M. E. Gurtin and A. I. Murdoch, ‘‘A continuum theory of elastic material surfaces,’’ Arch. Ration. Mech. Anal. 49, 291–323 (1975).

    Article  MathSciNet  Google Scholar 

  15. S. Lurie, P. Belov, D. Volkov-Bogorodsky, and N. Tuchkova, ‘‘Interphase layer theory and application in the mechanics of composite materials,’’ J. Mater. Sci. 41, 6693–6707 (2006).

    Article  Google Scholar 

  16. P. F. Papkovich, ‘‘Solution générale des équations différentielles fondamentales de l’élasticité, exprimeé par trois fonctiones harmoniques,’’ C. R. Acad. Sci. (Paris) 195, 513–515 (1932).

    Google Scholar 

  17. H. Neuber, ‘‘Ein neuer ansatz zur lösung raümlicher probleme der elastizitätstheorie,’’ Zeitschr. Angew. Math. Mech. 14, 203–212 (1934).

    Article  Google Scholar 

  18. J. M. Doyle, ‘‘A general solution for strain-gradient elasticity theory,’’ J. Math. Anal. Appl. 27, 171–180 (1969).

    Article  Google Scholar 

  19. D. B. Volkov-Bogorodskii and S. A. Lurie, ‘‘Solution of the Eshelby problem in gradient elasticity for multilayer spherical inclusions,’’ Mech. Solids 51, 161–176 (2016).

    Article  Google Scholar 

  20. S. Lurie, D. Volkov-Bogorodskiy, E. Moiseev, and A. Kholomeeva, ‘‘Radial multipliers in solutions of the Helmholtz equations,’’ Integral Transforms Spec. Funct. 30, 254–263 (2019).

    Article  MathSciNet  Google Scholar 

  21. S. A. Lurie and D. B. Volkov-Bogorodskiy, ‘‘On the radial multipliers method in the gradient elastic fracture mechanics,’’ Lobachevskii J. Math. 40 (7), 984–991 (2019).

    Article  MathSciNet  Google Scholar 

  22. D. B. Volkov-Bogorodskiy and E. I. Moiseev, ‘‘Systems of functions consistent with inhomogeneities of elliptic and spheroidal shapes in problems of continuum mechanics,’’ Lobachevskii J. Math. 40 (7), 1016–1024 (2019). https://doi.org/10.1134/S1995080219070175

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Bateman and A. Erdelyi, Higher Transcendental Functions (McGraw-Hill, New York, 1953), Vol. 1.

    MATH  Google Scholar 

Download references

Funding

This work is performed according to the tasks of Ministry of Science and High Education of Russian Federation (IAM RAS) and partially supported by grant no. 18-29-10085 mk of the Russian Foundation of Basic Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Lurie, D. B. Volkov-Bogorodskiy or P. A. Belov.

Additional information

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lurie, S.A., Volkov-Bogorodskiy, D.B., Moiseev, E.I. et al. On Structure of Fundamental Solutions for Coupled Thermoelasticity and Thermal Stationary Conductivity Problems. Lobachevskii J Math 42, 1841–1851 (2021). https://doi.org/10.1134/S1995080221080175

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080221080175

Keywords:

Navigation