Skip to main content
Log in

Computational Algorithm for Investigation Large Elastoplastic Deformations with Contact Interaction

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The paper is dedicated to the construction of a computational algorithm for the investigation of solids, taking into account the material and geometric nonlinearity and contact interaction. In the framework of the previously developed algorithm for the investigation of large elastoplastic deformations of solids the solutions of contact problems are derived. The algorithm has been based on the equation of the principle of virtual work in velocity terms. Contact interaction is modeled over the basis of the master-slave approach with penalty method. The closest point projection procedure is used to find the contact area. For the solution of the nonlinear system of equations incremental method is applied. The numerical implementation is based on the finite element method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. A. I. Golovanov, ‘‘Numerical modeling of large deformations of elastoplastic solids in terms of logarithms of principal stretches,’’ Comput. Continuum Mech. 4, 25–35 (2011).

    Article  Google Scholar 

  2. A. A. Rogovoi, ‘‘Kinematics of finite-strain elastic-inelastic deformation,’’ J. Appl. Mech. Tech. Phys. 49, 136–141 (2008).

    Article  MathSciNet  Google Scholar 

  3. V. G. Bazhenov, M. S. Baranova, A. I. Kibets, V. K. Lomunov, and E. V. Pavlenkova, ‘‘Buckling of elastic–plastic cylindrical and conical shells of revolution under axial impact loading,’’ Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 152 (4), 86–105 (2010).

    Google Scholar 

  4. J. S. Simo and C. Miehe, ‘‘Associative coupled termoplasticity at finite strains: Formulation, numerical analysis and implementation,’’ Comput. Methods Appl. Mech. Eng. 98, 41–104 (1992).

    Article  Google Scholar 

  5. Y. Basar and A. Eckstein, ‘‘Large inelastic strain analysis by multilayer shell elements,’’ Acta Mech. 141, 225–252 (2000).

    Article  Google Scholar 

  6. B. Yang and T. A. Laursen, ‘‘A large deformation mortar formulation of self contact with finite sliding,’’ Comput. Methods Appl. Mech. Eng. 197, 756–772 (2008).

    Article  MathSciNet  Google Scholar 

  7. D. M. Neto, M. C. Oliveira, and L. F. Menezes, ‘‘Surface smoothing procedures in computational contact mechanics,’’ Arch. Comput. Methods Eng. 24, 37–87 (2017).

    Article  MathSciNet  Google Scholar 

  8. P. Wriggers, Computational Contact Mechanics (Wiley, UK, 2002).

    MATH  Google Scholar 

  9. P. Wriggers, ‘‘Finite element algorithms for contact problems,’’ Arch. Comput. Methods Eng. 24, 1–49 (1995).

    Article  MathSciNet  Google Scholar 

  10. T. A. Laursen, ‘‘Convected description in large deformation frictional contact problems,’’ Int. J. Solids Struct. 31, 669–681 (1994).

    Article  MathSciNet  Google Scholar 

  11. T. A. Laursen, Computational Contact and Impact Mechanics (Springer, Berlin, 2002).

    MATH  Google Scholar 

  12. D. M. Neto, M. C. Oliveira, and L. F. Menezes, ‘‘Surface smoothing procedures in computational contact mechanics,’’Arch. Comput. Methods Eng. 24, 37–87 (2017).

    Article  MathSciNet  Google Scholar 

  13. A. Konyukhov and K. Schweizerhof, Computational Contact Mechanics—Geometrically Exact Theory for Arbitrary Shaped Bodies (Springer, Heidelberg, 2012).

    MATH  Google Scholar 

  14. J. S. Simo and T. A. Laursen, ‘‘An augmented lagrangian treatment of contact problems involving friction,’’ Comput. Struct. 42, 97–116 (1992).

    Article  MathSciNet  Google Scholar 

  15. E. Lee, ‘‘ Elastic–plastic deformation at finite strains,’’ J. Appl. Mech. 36, 1–6 (1969).

    Article  Google Scholar 

  16. J. S. Simo, ‘‘A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part I. Continuum formulation,’’ Comput. Methods Appl. Mech. Eng. 66, 199–219 (1988).

    Article  Google Scholar 

  17. C. Miehe, ‘‘A theory of large-strain isotropic thermoplastisity based on metric transformation tensor,’’ Arch. Appl. Mech. 66, 45–64 (1995).

    MATH  Google Scholar 

  18. B. Eidel and F. Gruttmann, ‘‘Elastoplastic orthotropy at finite strains: Multiplicative formulation and numerical implementation,’’ Comput. Mater. Sci. 28, 732–742 (2003).

    Article  Google Scholar 

  19. J. Schröder, F. Gruttmann, and J. Löblein, ‘‘A simple orthotropic finite elasto-plasticity model based on generalized stress-strain measures,’’ Comput. Mech. 30, 48–64 (2002).

    Article  Google Scholar 

  20. L. U. Sultanov, ‘‘Analysis of finite elastic-plastic deformations: Kinematics and constitutive equations,’’ Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 157 (4), 158–165 (2015).

    Google Scholar 

  21. L. U. Sultanov, ‘‘Analysis of large elastic-plastic deformations: Integration algorithm and numerical examples,’’ Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 159, 509–517 (2017).

    Google Scholar 

  22. A. I. Golovanov and L. U. Sultanov, ‘‘Postbuckling elastoplastic state analysis of three-dimensional bodies taking into account finite strains,’’ Russ. Aeronaut. 51, 362–368 (2008).

    Article  Google Scholar 

  23. J. Bonet and R. D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis (Cambridge Univ. Press, U.S.A., 1997).

    MATH  Google Scholar 

  24. R. L. Davydov and L. U. Sultanov, ‘‘Numerical algorithm of solving the problem of large elastic-plastic deformation by FEM,’’ PNRPU Mech. Bull. 1, 82–93 (2013).

    Google Scholar 

  25. A. I. Abdrakhmanova and L. U. Sultanov, ‘‘Numerical investigation of nonlinear deformations with contact interaction,’’ Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 160, 423–434 (2018).

    Google Scholar 

  26. M. Al-Dojayli and S. A. Meguid, ‘‘Accurate modeling of contact using cubic splines,’’ Finite Elem. Anal. Des. 38, 337–352 (2002).

    Article  Google Scholar 

  27. N. G. Burago, A. B. Zhuravlev, and I. S. Nikitin, ‘‘Analysis of stress state of GTE contact system ‘disk-blade’,’’ Comput. Continuum Mech. 4 (2), 5–16 (2011).

    Article  Google Scholar 

  28. I. B. Badriev and V. N. Paimushin, ‘‘Refined models of contact interaction of a thin plate with positioned on both sides deformable foundations,’’ Lobachevskii J. Math. 38, 779–793 (2017).

    Article  MathSciNet  Google Scholar 

  29. H. Parisch, ‘‘A formulation of arbitrarily shaped surface elements for three dimensional large deformation contact with friction,’’ Int. J. Numer. Methods Eng. 40, 3313–3324 (1997).

    Article  MathSciNet  Google Scholar 

  30. M. A. Puso, ‘‘A 3D contact smoothing method using Gregory patches,’’ Int. J. Numer. Methods Eng. 54, 1161–1194 (2002).

    Article  MathSciNet  Google Scholar 

  31. J. T. Oden, Finite Elements of Nonlinear Continua (McGraw-Hill, New York, 1972).

    MATH  Google Scholar 

  32. R. Izi, A. Konyukhov, and K. Schweizerhof, ‘‘Large penetration algorithm for 3D frictionless contact problems based on a covariant form,’’ Comput. Methods Appl. Mech. Eng. 217–220, 186–196 (2012).

    Article  MathSciNet  Google Scholar 

  33. M. A. Puso, T. A. Laursen, and J. Solberg ‘‘A segment-to-segment mortar contact method for quadratic elements and large deformations,’’ Comput. Methods Appl. Mech. Eng. 197, 555–566 (2008).

    Article  MathSciNet  Google Scholar 

  34. B. Yang, T. A. Laursen, and X. Meng, ‘‘Two dimensional mortar contact methods for large deformation frictional sliding,’’ Int. J. Numer. Methods Eng. 62, 1183–1225 (2005).

    Article  MathSciNet  Google Scholar 

  35. K. F. Chernykh, Nonlinear Theory of Elasticity in Machine-Building Calculations (Mashinostroenie, Leningrad, 1986) [in Russian].

    Google Scholar 

Download references

Funding

The reported study was supported by Government of the Republic of Tatarstan research projects and RFBR research projects nos. 18-41-160021, 18-41-160018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. U. Sultanov.

Additional information

(Submitted by D. A. Gubaidullin)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sultanov, L.U. Computational Algorithm for Investigation Large Elastoplastic Deformations with Contact Interaction. Lobachevskii J Math 42, 2056–2063 (2021). https://doi.org/10.1134/S199508022108031X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199508022108031X

Keywords:

Navigation