Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Thermochemical aerobic oxidation catalysis in water can be analysed as two coupled electrochemical half-reactions

Abstract

Heterogeneous aqueous-phase aerobic oxidations are important catalytic transformations; however, their mechanisms and the role of O2 remain unclear. Here we show that thermochemical aerobic oxidations of organic small molecules can be analysed as two coupled electrochemical half-reactions for O2 reduction and substrate oxidation. We find that the polarization curves of the two half-reactions closely predict the mixed potential of the catalyst measured during thermochemical catalysis across diverse reaction conditions, catalysts and reactant identity. Additionally, we find that driving the substrate oxidation electrochemically without O2 at the mixed potential leads to similar rates and selectivities as for the corresponding thermochemical reactions. These findings indicate that O2 acts as an electron scavenger to supply the electrochemical driving force for substrate oxidation. These studies provide a quantitative and predictive link between thermochemical and electrochemical catalysis, thereby enabling the design of new aerobic oxidation schemes by applying the principles of electrochemistry.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proposed SC model for aerobic oxidation catalysis in water.
Fig. 2: Pt-catalysed FA oxidation displays SC behaviour.
Fig. 3: SC mechanisms are retained across reaction conditions.
Fig. 4: SC mechanisms prevail across catalyst materials.
Fig. 5: SC mechanisms prevail across small-molecule substrates.
Fig. 6: SC mechanisms explain pH-dependent trends in catalysis.
Fig. 7: SC model predicts mixed potentials and rates of oxidation catalysis.

Similar content being viewed by others

Data availability

The data that support the findings of this study are included in the published article (and its Supplementary Information) or available from the corresponding author on reasonable request.

References

  1. Chheda, J. N., Huber, G. W. & Dumesic, J. A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew. Chem. Int. Ed. 46, 7164–7183 (2007).

    Article  CAS  Google Scholar 

  2. Guo, Z. et al. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem. Soc. Rev. 43, 3480–3524 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Zope, B. N., Hibbitts, D. D., Neurock, M. & Davis, R. J. Reactivity of the gold/water interface during selective oxidation catalysis. Science 330, 74–78 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Mallat, T. & Baiker, A. Oxidation of alcohols with molecular oxygen on solid catalysts. Chem. Rev. 104, 3037–3058 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Corma, A. & Garcia, H. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 37, 2096–2126 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Carrettin, S., McMorn, P., Johnston, P., Griffin, K. & Hutchings, G. J. Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide. Chem. Commun. 7, 696–697 (2002).

    Article  CAS  Google Scholar 

  7. Davis, S. E., Ide, M. S. & Davis, R. J. Selective oxidation of alcohols and aldehydes over supported metal nanoparticles. Green. Chem. 15, 17–45 (2013).

    Article  CAS  Google Scholar 

  8. Schuurman, Y., Kuster, B. F. M., van der Wiele, K. & Marin, G. B. Selective oxidation of methyl α-d-glucoside on carbon supported platinum. Appl. Catal. A Gen. 89, 47–68 (1992).

    Article  CAS  Google Scholar 

  9. van den Tillaart, J. A. A., Kuster, B. F. M. & Marin, G. B. Oxidative dehydrogenation of aqueous ethanol on a carbon supported platinum catalyst. Appl. Catal. A Gen. 120, 127–145 (1994).

    Article  Google Scholar 

  10. Kluytmans, J. H., Markusse, A., Kuster, B. F., Marin, G. & Schouten, J. Engineering aspects of the aqueous noble metal catalysed alcohol oxidation. Catal. Today 57, 143–155 (2000).

    Article  CAS  Google Scholar 

  11. Chang, C.-R., Yang, X.-F., Long, B. & Li, J. A water-promoted mechanism of alcohol oxidation on a Au(111) surface: understanding the catalytic behavior of bulk gold. ACS Catal. 3, 1693–1699 (2013).

    Article  CAS  Google Scholar 

  12. Keresszegi, C., Burgi, T., Mallat, T. & Baiker, A. On the role of oxygen in the liquid-phase aerobic oxidation of alcohols on palladium. J. Catal. 211, 244–251 (2002).

    Article  CAS  Google Scholar 

  13. Besson, M. & Gallezot, P. Selective oxidation of alcohols and aldehydes on metal catalysts. Catal. Today 57, 127–141 (2000).

    Article  CAS  Google Scholar 

  14. Gangwal, V., Schaaf, J., Kuster, B. & Schouten, J. Catalyst performance for noble metal catalysed alcohol oxidation: reaction-engineering modelling and experiments. Catal. Today 96, 223–234 (2004).

    Article  CAS  Google Scholar 

  15. Ide, M. S. & Davis, R. J. The important role of hydroxyl on oxidation catalysis by gold nanoparticles. Acc. Chem. Res. 47, 825–833 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Wieckowski, A. & Neurock, M. Contrast and synergy between electrocatalysis and heterogeneous catalysis. Adv. Phys. Chem. 2011, 1–18 (2011).

    Article  CAS  Google Scholar 

  17. Qi, X., Shinagawa, T., Kishimoto, F. & Takanabe, K. Determination and perturbation of the electronic potentials of solid catalysts for innovative catalysis. Chem. Sci. 12, 540–545 (2021).

    Article  CAS  Google Scholar 

  18. Mallat, T. & Baiker, A. Catalyst potential measurement: a valuable tool for understanding and controlling liquid phase redox reactions. Top. Catal. 8, 115–124 (1999).

    Article  CAS  Google Scholar 

  19. Power, G. P., Staunton, W. P. & Ritchie, I. M. Mixed potential measurements in the elucidation of corrosion mechanisms—II. Some measurements. Electrochim. Acta 27, 165–169 (1982).

    Article  CAS  Google Scholar 

  20. Li, J., Zhong, T.-K. & Wadsworth, M. E. Application of mixed potential theory in hydrometallurgy. Hydrometallurgy 29, 47–60 (1992).

    Article  CAS  Google Scholar 

  21. Bindra, P. & Roldan, J. Mechanisms of electroless metal plating. III. Mixed potential theory and the interdependence of partial reactions. J. Appl. Electrochem. 17, 1254–1266 (1987).

    Article  CAS  Google Scholar 

  22. Zhou, H., Park, J. H., Fan, F.-R. F. & Bard, A. J. Observation of single metal nanoparticle collisions by open circuit (mixed) potential changes at an ultramicroelectrode. J. Am. Chem. Soc. 134, 13212–13215 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Park, J. H. et al. Open circuit (mixed) potential changes upon contact between different inert electrodes—size and kinetic effects. Anal. Chem. 85, 964–970 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Percival, S. J. & Bard, A. J. Ultra-sensitive potentiometric measurements of dilute redox molecule solutions and determination of sensitivity factors at platinum ultramicroelectrodes. Anal. Chem. 89, 9843–9849 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Mills, A. Heterogeneous redox catalysts for oxygen and chlorine evolution. Chem. Soc. Rev. 18, 285–316 (1989).

    Article  CAS  Google Scholar 

  26. Chauhan, N. L., Juvekar, V. A., Mahajani, S. M., Suresh, A. K. & Sarkar, A. Validation of mixed potential theory using formic acid and ferric ion as a redox couple. ECS Trans. 75, 39–47 (2017).

    Article  CAS  Google Scholar 

  27. Miller, D. S., Bard, A. J., McLendon, G. & Ferguson, J. Catalytic water reduction at colloidal metal ‘microelectrodes’. 2. Theory and experiment. J. Am. Chem. Soc. 103, 5336–5341 (1981).

    Article  CAS  Google Scholar 

  28. Spiro, M. & Griffin, P. W. Proof of an electron-transfer mechanism by which metals can catalyse oxidation-reduction reactions. J. Chem. Soc. D 262b–263 (1969).

  29. Spiro, M. & Ravnö, A. B. 15. Heterogeneous catalysis in solution. Part II. The effect of platinum on oxidation–reduction reactions. J. Chem. Soc. 78–96 (1965).

  30. Adams, J. S., Kromer, M. L., Rodríguez-López, J. & Flaherty, D. W. Unifying concepts in electro- and thermocatalysis toward hydrogen peroxide production. J. Am. Chem. Soc. 143, 7940–7957 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Markovic, N. Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 45, 117–229 (2002).

    Article  CAS  Google Scholar 

  32. Mayrhofer, K. J. J. et al. The impact of geometric and surface electronic properties of Pt-catalysts on the particle size effect in electrocatalysis. J. Phys. Chem. B 109, 14433–14440 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Lyons, M. E. G., Breen, W. & Cassidy, J. Ascorbic acid oxidation at polypyrrole-coated electrodes. J. Chem. Soc. Faraday Trans. 87, 115–123 (1991).

    Article  CAS  Google Scholar 

  34. Mark, E., Davis, R. J. D. Fundamentals of Chemical Reaction Engineering (McGraw-Hill Higher Education, 2003).

  35. Sepa, D. B., Vojnovic, M. V. & Damjanovic, A. Reaction intermediates as a controlling factor in the kinetics and mechanism of oxygen reduction at platinum electrodes. Electrochim. Acta 26, 781–793 (1981).

    Article  CAS  Google Scholar 

  36. Foo, K. Y. & Hameed, B. H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156, 2–10 (2010).

    Article  CAS  Google Scholar 

  37. Negahdar, L., Zeng, F., Palkovits, S., Broicher, C. & Palkovits, R. Mechanistic aspects of the electrocatalytic oxygen evolution reaction over Ni–Co oxides. ChemElectroChem 6, 5588–5595 (2019).

    Article  CAS  Google Scholar 

  38. Petrii, O. A. Pt–Ru electrocatalysts for fuel cells: a representative review. J. Solid State Electrochem. 12, 609–642 (2008).

    Article  CAS  Google Scholar 

  39. Tatsumi, H. et al. Alcohol oxidation at platinum–gas and platinum–liquid interfaces: the effect of platinum nanoparticle size, water coadsorption, and alcohol concentration. J. Phys. Chem. C. 121, 7365–7371 (2017).

    Article  CAS  Google Scholar 

  40. Marinkovic, N. S., Li, M. & Adzic, R. R. Pt-based catalysts for electrochemical oxidation of ethanol. Top. Curr. Chem. 377, 11 (2019).

    Article  CAS  Google Scholar 

  41. Cohen, J. L., Volpe, D. J. & Abruña, H. D. Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes. Phys. Chem. Chem. Phys. 9, 49–77 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Rizo, R. et al. Pt-richcore/Sn-richsubsurface/Ptskin nanocubes as highly active and stable electrocatalysts for the ethanol oxidation reaction. J. Am. Chem. Soc. 140, 3791–3797 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Abe, H. et al. Electrocatalytic performance of fuel oxidation by Pt3Ti nanoparticles. J. Am. Chem. Soc. 130, 5452–5458 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Zhu, C., Lan, B., Wei, R.-L., Wang, C.-N. & Yang, Y.-Y. Potential-dependent selectivity of ethanol complete oxidation on Rh electrode in alkaline media: a synergistic study of electrochemical ATR-SEIRAS and IRAS. ACS Catal. 9, 4046–4053 (2019).

    Article  CAS  Google Scholar 

  45. Wang, Y., Zou, S. & Cai, W.-B. Recent advances on electro-oxidation of ethanol on Pt- and Pd-based catalysts: from reaction mechanisms to catalytic materials. Catalysts 5, 1507–1534 (2015).

    Article  CAS  Google Scholar 

  46. Gu, Q., Sautet, P. & Michel, C. Unraveling the role of base and catalyst polarization in alcohol oxidation on Au and Pt in water. ACS Catal. 8, 11716–11721 (2018).

    Article  CAS  Google Scholar 

  47. Ledezma-Yanez, I. et al. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2, 17031 (2017).

    Article  CAS  Google Scholar 

  48. Chen, X., McCrum, I. T., Schwarz, K. A., Janik, M. J. & Koper, M. T. M. Co-adsorption of cations as the cause of the apparent pH dependence of hydrogen adsorption on a stepped platinum single-crystal electrode. Angew. Chem. Int. Ed. 56, 15025–15029 (2017).

    Article  CAS  Google Scholar 

  49. Spendelow, J. S. & Wieckowski, A. Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys. Chem. Chem. Phys. 9, 2654–2675 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Rodriguez, P. & Koper, M. T. M. Electrocatalysis on gold. Phys. Chem. Chem. Phys. 16, 13583–13594 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Quaino, P., Luque, N. B., Nazmutdinov, R., Santos, E. & Schmickler, W. Why is gold such a good catalyst for oxygen reduction in alkaline media? Angew. Chem. Int. Ed. 51, 12997–13000 (2012).

    Article  CAS  Google Scholar 

  52. Kwon, Y., Lai, S. C. S., Rodriguez, P. & Koper, M. T. M. Electrocatalytic oxidation of alcohols on gold in alkaline media: base or gold catalysis? J. Am. Chem. Soc. 133, 6914–6917 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Ye, S., Kita, H. & Aramata, A. Hydrogen and anion adsorption at platinum single crystal electrodes in phosphate solutions over a wide range of pH. J. Electroanal. Chem. 333, 299–312 (1992).

    Article  CAS  Google Scholar 

  54. Gisbert, R., García, G. & Koper, M. T. M. Adsorption of phosphate species on poly-oriented Pt and Pt(111) electrodes over a wide range of pH. Electrochim. Acta 55, 7961–7968 (2010).

    Article  CAS  Google Scholar 

  55. Gangwal, V., Vanderschaaf, J., Kuster, B. & Schouten, J. Influence of pH on noble metal catalysed alcohol oxidation: reaction kinetics and modelling. J. Catal. 229, 389–403 (2005).

    Article  CAS  Google Scholar 

  56. McCrum, I. T. & Koper, M. T. M. The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat. Energy 5, 891–899 (2020).

    Article  CAS  Google Scholar 

  57. Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019).

    Article  CAS  Google Scholar 

  58. Sarabia, F. J., Sebastián-Pascual, P., Koper, M. T. M., Climent, V. & Feliu, J. M. Effect of the interfacial water structure on the hydrogen evolution reaction on Pt(111) modified with different nickel hydroxide coverages in alkaline media. ACS Appl. Mater. Interfaces 11, 613–623 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Ryu, J. & Surendranath, Y. Tracking electrical fields at the Pt/H2O interface during hydrogen catalysis. J. Am. Chem. Soc. 141, 15524–15531 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sheng, W. et al. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 6, 5848 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Rebollar, L. et al. ‘Beyond adsorption’ descriptors in hydrogen electrocatalysis. ACS Catal. 10, 14747–14762 (2020).

    Article  CAS  Google Scholar 

  62. Cheng, T., Wang, L., Merinov, B. V. & Goddard, W. A. Explanation of dramatic pH-dependence of hydrogen binding on noble metal electrode: greatly weakened water adsorption at high pH. J. Am. Chem. Soc. 140, 7787–7790 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Nellist, M. R. et al. Potential-sensing electrochemical atomic force microscopy for in operando analysis of water-splitting catalysts and interfaces. Nat. Energy 3, 46–52 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Wesley and Y. Román for helpful discussions. This work was supported primarily by the Air Force Office of Scientific Research (AFOSR) under award number FA9550-20-1-0291. The online mass spectrometry studies were supported by the Air Force Office of Scientific Research (AFOSR) under award number FA9550-18-1-0420. J.R. acknowledges support from a Samsung Scholarship. C.J.K is supported by the National Science Foundation Graduate Research Fellowship under grant number 1122374.

Author information

Authors and Affiliations

Authors

Contributions

J.R., W.C.H. and Y.S. conceived the research and developed experiments. J.R. conducted all experiments. D.T.B., R.P.B. and C.J.K contributed to setting up the online mass spectrometry and collected data using it. J.R. and Y.S wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Yogesh Surendranath.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Jun Hui Park and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and Methods.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, J., Bregante, D.T., Howland, W.C. et al. Thermochemical aerobic oxidation catalysis in water can be analysed as two coupled electrochemical half-reactions. Nat Catal 4, 742–752 (2021). https://doi.org/10.1038/s41929-021-00666-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00666-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing