Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Enhancing oxygen reduction electrocatalysis by tuning interfacial hydrogen bonds

Abstract

Proton activity at the electrified interface is central to the kinetics of proton-coupled electron transfer (PCET) reactions for making chemicals and fuels. Here we employ a library of protic ionic liquids in an interfacial layer on platinum and gold to alter local proton activity, where the intrinsic oxygen-reduction reaction (ORR) activity is enhanced up to fivefold, exhibiting a volcano-shaped dependence on the pKa of the ionic liquid. The enhanced ORR activity is attributed to strengthened hydrogen bonds between ORR products and ionic liquids with comparable pKas, resulting in favourable PCET kinetics. This proposed mechanism is supported by in situ surface-enhanced Fourier-transform infrared spectroscopy and our simulation of PCET kinetics based on computed proton vibrational wavefunctions at the hydrogen-bonding interface. These findings highlight opportunities for using non-covalent interactions between hydrogen-bonded structures and solvation environments at the electrified interface to tune the kinetics of ORR and beyond.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tuning local proton activity for the ORR.
Fig. 2: pKa-dependent ORR activity.
Fig. 3: Potential-dependent infrared spectra of [MTBD][NTf2]-modified gold.
Fig. 4: pKa-dependent interfacial hydrogen-bond structure.
Fig. 5: Hydrogen-bond-dependent PCET kinetics in the ORR.

Data availability

The data supporting the findings of this study are available in the paper and its Supplementary Information. Extra data are available from the corresponding authors on reasonable request.

References

  1. Hammes-Schiffer, S. & Stuchebrukhov, A. A. Theory of coupled electron and proton transfer reactions. Chem. Rev. 110, 6939–6960 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Weinberg, D. R. et al. Proton-coupled electron transfer. Chem. Rev. 112, 4016–4093 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Hammes-Schiffer, S. & Soudackov, A. V. Proton-coupled electron transfer in solution, proteins, and electrochemistry. J. Phys. Chem. B 112, 14108–14123 (2012).

    Article  CAS  Google Scholar 

  4. Horvath, S., Fernandez, L. E., Soudackov, A. V. & Hammes-Schiffer, S. Insights into proton-coupled electron transfer mechanisms of electrocatalytic H2 oxidation and production. Proc. Natl Acad. Sci. USA 109, 15663–15668 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mayer, J. M. Proton-coupled electron transfer: a reaction chemist’s view. Annu. Rev. Phys. Chem. 55, 363–390 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Koper, M. T. Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chem. Sci. 4, 2710–2723 (2013).

    Article  CAS  Google Scholar 

  7. Mora, S. J. et al. Proton-coupled electron transfer in artificial photosynthetic systems. Acc. Chem. Res. 51, 445–453 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Viswanathan, V., Hansen, H. A., Rossmeisl, J. & Nørskov, J. K. Unifying the 2e and 4e reduction of oxygen on metal surfaces. J. Phys. Chem. Lett. 3, 2948–2951 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Shao, M. H. & Adzic, R. R. Spectroscopic identification of the reaction intermediates in oxygen reduction on gold in alkaline solutions. J. Phys. Chem. B 109, 16563–16566 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Casalongue, H. S. et al. Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode. Nat. Commun. 4, 1–6 (2013).

    Article  CAS  Google Scholar 

  11. Dong, J.-C. et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 4, 60–67 (2019).

    Article  CAS  Google Scholar 

  12. Strasser, P. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Bligaard, T. & Nørskov, J. K. Ligand effects in heterogeneous catalysis and electrochemistry. Electrochim. Acta 52, 5512–5516 (2007).

    Article  CAS  Google Scholar 

  14. Calle-Vallejo, F. et al. Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 350, 185–189 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Escudero-Escribano, M. et al. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 352, 73–76 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Snyder, J., Fujita, T., Chen, M. W. & Erlebacher, J. Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts. Nat. Mater. 9, 904–907 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Blizanac, B. B. et al. Anion adsorption, CO oxidation, and oxygen reduction reaction on a Au(100) surface: the pH effect. J. Phys. Chem. B 108, 625–634 (2004).

    Article  CAS  Google Scholar 

  19. Koper, M. T. M. Volcano activity relationships for proton-coupled electron transfer reactions in electrocatalysis. Top. Catal. 58, 1153–1158 (2015).

    Article  CAS  Google Scholar 

  20. Chen, C. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, G. R., Munoz, M. & Etzold, B. J. Accelerating oxygen-reduction catalysts through preventing poisoning with non-reactive species by using hydrophobic ionic liquids. Angew. Chem. Int. Ed. 55, 2257–2261 (2016).

    Article  CAS  Google Scholar 

  22. Strmcnik, D. et al. The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nat. Chem. 1, 466–472 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Li, M. F., Liao, L. W., Yuan, D. F., Mei, D. & Chen, Y.-X. pH effect on oxygen reduction reaction at Pt(111) electrode. Electrochim. Acta 110, 780–789 (2013).

    Article  CAS  Google Scholar 

  24. Benn, E., Uvegi, H. & Erlebacher, J. Characterization of nanoporous metal-ionic liquid composites for the electrochemical oxygen reduction reaction. J. Electrochem. Soc. 162, H759–H766 (2015).

    Article  CAS  Google Scholar 

  25. Miran, M. S., Yasuda, T., Susan, M. A. B. H., Dokko, K. & Watanabe, M. Electrochemical properties of protic ionic liquids: correlation between open circuit potential for H2/O2 cells under non-humidified conditions and ΔpKa. RSC Adv. 3, 4141–4144 (2013).

    Article  CAS  Google Scholar 

  26. Khan, A., Gunawan, C. A. & Zhao, C. Oxygen reduction reaction in ionic liquids: fundamentals and applications in energy and sensors. ACS Sustain. Chem. Eng. 5, 3698–3715 (2017).

    Article  CAS  Google Scholar 

  27. Higgins, E. M. et al. pKas of the conjugate acids of N-heterocyclic carbenes in water. Chem. Commun. 47, 1559–1561 (2011).

    Article  CAS  Google Scholar 

  28. Kaupmees, K., Trummal, A. & Leito, I. Basicities of strong bases in water: a computational study. Croat. Chem. Acta 87, 385–395 (2014).

    Article  Google Scholar 

  29. Otake, Y., Nakamura, H. & Fuse, S. Rapid and mild synthesis of amino acid N-carboxy anhydrides: basic-to-acidic flash switching in a microflow. React. Angew. Chem. Int. Ed. 130, 11559–11563 (2018).

    Article  Google Scholar 

  30. Spialter, L. & Moshier, R. W. Amines IV The base strengths of tetramethylated 1,2-ethanediamines. J. Am. Chem. Soc. 79, 5955–5957 (1957).

    Article  CAS  Google Scholar 

  31. Tehan, B. G. et al. Estimation of pKa using semiempirical molecular orbital methods. Part 2: application to amines, anilines and various nitrogen containing heterocyclic compounds. Quant. Struct.-Act. Relat. 21, 473–485 (2002).

    Article  CAS  Google Scholar 

  32. Wang, J., Markovic, N. & Adzic, R. Kinetic analysis of oxygen reduction on Pt (111) in acid solutions: intrinsic kinetic parameters and anion adsorption effects. J. Phys. Chem. B 108, 4127–4133 (2004).

    Article  CAS  Google Scholar 

  33. Shinozaki, K., Zack, J. W., Richards, R. M., Pivovar, B. S. & Kocha, S. S. Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique. J. Electrochem. Soc. 162, F1144–F1158 (2015).

    Article  CAS  Google Scholar 

  34. Ford, D. C., Nilekar, A. U., Xu, Y. & Mavrikakis, M. Partial and complete reduction of O2 by hydrogen on transition metal surfaces. Surf. Sci. 604, 1565–1575 (2010).

    Article  CAS  Google Scholar 

  35. Chevalet, J., Rouelle, F., Gierst, L. & Lambert, J. P. Electrogeneration and some properties of the superoxide ion in aqueous solutions. J. Electroanal. Chem. Inter. Electrochem. 39, 201–216 (1972).

    Article  CAS  Google Scholar 

  36. Costentin, C., Evans, D. H., Robert, M., Saveant, J. M. & Singh, P. S. Electrochemical approach to concerted proton and electron transfers. Reduction of the water–superoxide ion complex. J. Am. Chem. Soc. 127, 12490–12491 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Li, X. & Gewirth, A. A. Oxygen electroreduction through a superoxide intermediate on bi-modified Au surfaces. J. Am. Chem. Soc. 127, 5252–5260 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Wakisaka, M., Suzuki, H., Mitsui, S., Uchida, H. & Watanabe, M. Increased oxygen coverage at Pt–Fe alloy cathode for the enhanced oxygen reduction reaction studied by EC-XPS. J. Phys. Chem. C. 112, 2750–2755 (2008).

    Article  CAS  Google Scholar 

  39. Brzezinski, B. & Zundel, G. Formation of hydrogen-bonded chains between strong N-base and N–H acids—a FTIR study. J. Mol. Struct. 446, 199–207 (1998).

    Article  CAS  Google Scholar 

  40. Moschovi, A. M., Ntais, S., Dracopoulos, V. & Nikolakis, V. Vibrational spectroscopic study of the protic ionic liquid 1-H-3-methylimidazolium bis(trifluoromethanesulfonyl)imide. Vib. Spectrosc. 63, 350–359 (2012).

    Article  CAS  Google Scholar 

  41. Ataka, K.-I. et al. Reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy. J. Phys. Chem. 100, 10664–10672 (1996).

    Article  CAS  Google Scholar 

  42. Nakamoto, K., Margoshes, M. & Rundle, R. E. Stretching frequencies as a function of distances in hydrogen bonds. J. Am. Chem. Soc. 77, 6480–6486 (1955).

    Article  CAS  Google Scholar 

  43. Gilli, P., Pretto, L., Bertolasi, V. & Gilli, G. Predicting hydrogen-bond strengths from acid–base molecular properties. The pKa slide rule: toward the solution of a long-lasting problem. Acc. Chem. Res. 42, 33–44 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Jusys, Z., Schnaidt, J. & Behm, R. J. O2 reduction on a Au film electrode in an ionic liquid in the absence and presence of Mg(2+) ions: product formation and adlayer dynamics. J. Chem. Phys. 150, 041724 (2019).

    Article  PubMed  CAS  Google Scholar 

  45. Cheng, H.-W. et al. Characterizing the influence of water on charging and layering at electrified ionic-liquid/solid interfaces. Adv. Mater. Interfaces 2, 1500159 (2015).

    Article  CAS  Google Scholar 

  46. Liu, Y.-P. & Newton, M. D. Reorganization energy for electron transfer at film-modified electrode surfaces: a dielectric continuum model. J. Phys. Chem. 98, 7162–7169 (1994).

    Article  CAS  Google Scholar 

  47. Maurel, P. Relevance of dielectric constant and solvent hydrophobicity to the organic solvent effect in enzymology. J. Biol. Chem. 253, 1677–1683 (1978).

    Article  CAS  PubMed  Google Scholar 

  48. Chalkley, M. J., Del Castillo, T. J., Matson, B. D. & Peters, J. C. Fe-mediated nitrogen fixation with a metallocene mediator: exploring pKa effects and demonstrating electrocatalysis. J. Am. Chem. Soc. 140, 6122–6129 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kilgore, U. J. et al. [Ni(PPh2NC6H4X2)2]2+ complexes as electrocatalysts for H2 production: effect of substituents, acids, and water on catalytic rates. J. Am. Chem. Soc. 133, 5861–5872 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Margarit, C. G., Schnedermann, C., Asimow, N. G. & Nocera, D. G. Carbon dioxide reduction by iron hangman porphyrins. Organometallics 38, 1219–1223 (2018).

    Article  CAS  Google Scholar 

  51. Peng, S. et al. A facile synthesis of monodisperse Au nanoparticles and their catalysis of CO oxidation. Nano Res. 1, 229–234 (2008).

    Article  CAS  Google Scholar 

  52. Chen, M. et al. Silver nanoparticles capped by oleylamine: formation, growth, and self-organization. Langmuir 23, 5296–5304 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Huddleston, J. G. et al. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green. Chem. 3, 156–164 (2001).

    Article  CAS  Google Scholar 

  54. Nakamoto, H. & Watanabe, M. Bronsted acid–base ionic liquids for fuel cell electrolytes. Chem. Commun. 24, 2539–2541 (2007).

    Article  Google Scholar 

  55. Miki, A., Ye, S. & Osawa, M. Surface-enhanced IR absorption on platinum nanoparticles: an application to real-time monitoring of electrocatalytic reactions. Chem. Commun. 14, 1500–1501 (2002).

    Article  CAS  Google Scholar 

  56. Frisch, M. et al. Gaussian 09 Revision D. 01 (Gaussian, 2009).

  57. Laury, M. L., Carlson, M. J. & Wilson, A. K. Vibrational frequency scale factors for density functional theory and the polarization consistent basis sets. J. Comput. Chem. 33, 2380–2387 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Webb, S. P. & Hammes-Schiffer, S. Fourier grid Hamiltonian multiconfigurational self-consistent-field: a method to calculate multidimensional hydrogen vibrational wavefunctions. J. Chem. Phys. 113, 5214–5227 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Toyota Research Institute through the Accelerated Materials Design and Discovery programme and the Skoltech-MIT Center for Electrochemical Energy. We thank Professor Zhong-Qun Tian from Xiamen University for fruitful discussion. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant no. ACI-154856283. This research also used resources of the National Energy Research Scientific Computing Center (NERSC); a DOE Office of Science User Facility supported by the Office of Science of the US DOE under contract no. DE-AC02-05CH11231. T.W. was supported by financial support from the National Natural Science Foundation of China (grant 21875194) and the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Contributions

Y.S.-H. and T.W conceived the idea and designed the experiments. T.W. carried out experiments on catalyst synthesis, electrocatalytic tests and data analysis. Y.Z. and T.W. performed the in situ surface-enhanced FTIR spectroscopy measurements. Y.Z. and T.W performed the DFT calculations and analysis. T.W. and B.H. analysed the electrochemical data. B.C. synthesized nanoparticles. R.R.R., L.G. and S.-G.S. participated in the discussion and interpretation of experimental and theoretical data. Y.S.-H. and T.W. wrote the manuscript. All of the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yang Shao-Horn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Sharon Hammes-Schiffer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Figs. 1–29, Tables 1–11, and notes 1 and 2.

Supplementary Data 1

Atomic coordinates of optimized structure of MTBD-OH.

Supplementary Data 2

Atomic coordinates of optimized structure of DEMA-OH.

Supplementary Data 3

Atomic coordinates of optimized structure of C4Him-OH.

Supplementary Data 4

Atomic coordinates of optimized structure of MTBD-H2O.

Supplementary Data 5

Atomic coordinates of optimized structure of MTBD-OOH.

Supplementary Data 6

Atomic coordinates of optimized structure of DEMA-OOH.

Supplementary Data7

Atomic coordinates of optimized structure of C4Him-OOH.

Supplementary Data 8

Atomic coordinates of optimized structure of DEMA-HOOH.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zhang, Y., Huang, B. et al. Enhancing oxygen reduction electrocatalysis by tuning interfacial hydrogen bonds. Nat Catal 4, 753–762 (2021). https://doi.org/10.1038/s41929-021-00668-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00668-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing