Skip to main content

Advertisement

Log in

A short investigation on LiMn2O4 wrapped with MWCNT as composite cathode for lithium-ion batteries

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The need for large-scale batteries impels the development of high-performance cathode material for advanced lithium-ion batteries (LIBs). The existing cathode materials such as LiCoO2, LiNiO2 and LiMnO2 were rated as potentially viable cathodes for commercial applications. Among these, LiMn2O4 and its composites was considered a sound cathode material for high-performance LIBs. In this study, the multi-walled carbon nanotube (MWCNT)-wrapped spinel LiMn2O4 nanocathode was synthesized via simple sol–gel method and characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), Raman, Impedance and galvanostatic charge/discharge analyses to study their structural, morphological, optical and electrochemical properties, respectively. XRD results reveal that the pure and MWCNT-embedded LiMn2O4 nanocathode exhibited similar cubic structure with space group of Fd3m. The as-fabricated MWCNT/LiMn2O4 battery showed the excellent reversible capacity (114 mAh g–1) with higher coulombic efficiency after multiple cycles. Herein, simple wrapping methodology was adopted to overcome the drawbacks of the pure spinel. Incorporated MWCNT uniformly entwined in the LiMn2O4 and lead to prevent the volume expansion, and pulverization in surface of the active LiMn2O4 particles, which confirmed from post FESEM analysis and their results are discussed. Interestingly, MWCNT addition showed that the enriched electrochemical properties in LiMn2O4 nanoparticles are able to hold as a potential cathode for high voltage LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Yoon Y, Park C, Kim J and Shin D 2013 J. Power Sources 226 186

    Article  CAS  Google Scholar 

  2. Perumal P, Christopher Selvin P, Selvasekarapandian S, Sivaraj P, Abhilash K P, Moniha V et al 2019 Polym. Degrad. Stab. 159 43

    Article  CAS  Google Scholar 

  3. Xia Hui, Luo Zhentao and Xie Jianping 2012 Prog. Nat. Sci. Mater. Int. 22 572

    Article  Google Scholar 

  4. Yang Xuerui, Li Jianhui, Xing Lidan, Liao Youhao, Mengqing Xu, Huang Qimimg et al 2017 Electrochim. Acta 227 24

    Article  CAS  Google Scholar 

  5. Xu K 2004 Chem. Rev. 104 4303

    Article  CAS  Google Scholar 

  6. Kang B and Cedar G 2009 Nature 458 190

    Article  CAS  Google Scholar 

  7. Kim E-Y, Lee B-R, Yun G, Eun-Suok O and Lee H 2015 Curr. Appl. Phys. 15 429

    Article  Google Scholar 

  8. Wang X, Chen X, Gao L, Zheng H, Ji M, Shen T et al 2003 J. Cryst. Growth 256 123

    Article  CAS  Google Scholar 

  9. Ma S-B, Nam K-W, Yoon W-S, Bak S-M, Yang X Q, Cho B-W et al 2009 Electrochem Commun. 11 1575

    Article  CAS  Google Scholar 

  10. Xia H, Ragavendran K R, Xie J and Lu L 2012 J. Power Sources 212 28

  11. Liu X-M, Huang Z-D, Oh S, Ma P-C, Chan P C H, Vedam G K et al 2010 J. Power Sources 195 4290

  12. Chen S, Mi C, Linghao S, Gao B, Qingbin F and Zhang X 2009 J. Appl. Electrochem. 39 1943

    Article  CAS  Google Scholar 

  13. Zhao M, Zhang B, Huang G, Dai W, Wang F and Song X 2012 Energy Fuels 26 1214

    Article  CAS  Google Scholar 

  14. Julien C M and Massot M 2003 Mater. Sci. Eng. B 97 217

    Article  Google Scholar 

  15. Nikkan N 2008 Int. J. Electrochem. Sci. 3 691

    Google Scholar 

  16. Tan A T, Nguyen H S, Nguyen O T T, Dang C T, Hoang L A and Pham L D 2019 Mater Res. Exp. 6 65505

    Article  Google Scholar 

  17. Perumal P, Sivaraj P, Abhilash K P, Soundarya G G, Balraju P and Christopher Selvin P 2020 J. Sci. Adv. Mater. Devices 5 346

    Article  Google Scholar 

  18. Sivaraj P, Abhilash K P, Nalini B, Balraju P, Yadav S K, Jayapandi S et al 2019 Ionics 25 2041

  19. Jiang C H, Dou S X, Liu H K, Ichihara M and Zhou H S 2007 J. Power Sources 172 410

    Article  CAS  Google Scholar 

  20. Zhao X, Hayner C M and Kung H H 2011 J. Mater. Chem. 21 17297

  21. Tang W, Wang X J, Hou Y Y, Li L L, Sun H, Zhu Y S et al 2012 J. Power Sources 198 308

    Article  CAS  Google Scholar 

  22. Chen Y, Xie K, Pan Y and Zheng C 2011 J. Power Sources 196 6493

    Article  CAS  Google Scholar 

  23. Lee H-W, Muralidharan P, Ruffo R, Mari C M, Cui Y, Kim D K 2010 Nano Lett. 10 3852

  24. Tang W, Liu L L, Tian S, Li L, Li L L, Yue Y B et al 2011 Electrochem. Commun. 13 1159

    Article  CAS  Google Scholar 

  25. Yue H J, Huang X K, Lv D P and Yang Y 2009 Electrochim Acta 54 5363

    Article  CAS  Google Scholar 

  26. Jia X, Yan C, Chen Z, Wang R, Zhang Q, Guo L et al 2011 Chem. Commun. 47 9669

    Article  CAS  Google Scholar 

  27. von Bulow J F, Zhang H L, Morse D E 2012 Adv. Energy Mater. 2 309

Download references

Acknowledgements

KPA was supported by the European Structural and Investment Funds, OPRDE-funded project ‘CHEMFELLS IV’ (No. CZ.02.2.69/0.0/0.0/20_079/0017899). Dr ZS was supported by Czech Science Foundation (GACR No. 20-16124J).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Perumal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perumal, P., Abhilash, K.P., Selvin, P. et al. A short investigation on LiMn2O4 wrapped with MWCNT as composite cathode for lithium-ion batteries. Bull Mater Sci 44, 243 (2021). https://doi.org/10.1007/s12034-021-02532-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02532-0

Keywords

Navigation