Skip to main content
Log in

Management of carbon dioxide released from spent nuclear fuel through voloxidation

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The management of radioactive carbon (C-14) from spent nuclear fuel (SNF) in a voloxidation process is vital to prevent radioactive contamination of the environment. Thus, a double alkali method was applied to absorb the gaseous phase of C-14 (CO2) and to immobilize radioactive carbon into a stable structure. Based on the two-film theory, mass transfer and enhancement factor were evaluated for CO2 absorption in NaOH solution with regards to the effects of operating conditions such as the solution concentration, CO2 partial pressure, and gas flow rate on the absorbing performance. The absorption tests were carried out targeting the successful capture of CO2 released from SNF with a high decontamination factors (DF) more than 103. Causticization with Ca(OH)2 leads to the immobilization of absorbed carbon into a scalenohedral calcite (CaCO3) crystal, and its stable and nonporous characteristics suggested that calcite is a suitable structure for preparing waste forms stored in a geological repository.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

E :

Enhancement factor

G :

Molar flow rate

\(g\) :

Gravitational acceleration

\(H\), \({H}_{w}\) :

Henry’s law constant for CO2 in NaOH solution and pure water, respectively

Ha :

Hatta number

\(I\) :

Ionic strength

\(P\) :

Operating pressure

\(Re\) :

Reynolds number

\(Sc\) :

Schmidt number

\(Sh\) :

Sherwood number

\(T\) :

Temperature

\({a}_{e}\) :

Effective interfacial area

\({c}_{i}\) :

Concentration for individual ions in the solution

\({D}_{{CO}_{2}}\), \({D}_{w}\) :

Diffusivity of CO2 in NaOH solution and pure water, respectively

\({D}_{OH}\) :

Diffusivity of OH ion in the solution

\({d}_{0}\) :

Diameter of the orifice in the gas distributor

\({d}_{s}\) :

Sauter-mean diameter

E i :

Enhancement factor for instantaneous reaction

\({k}_{G}\) :

Mass transfer coefficient for the gas phase

\({k}_{L}\) :

Mass transfer coefficient for the liquid phase

\({K}_{G}{a}_{e}\) :

Gas-phase overall mass transfer coefficient

\({k}_{OH}\) :

Reaction rate constant

\({k}_{OH}^{\infty }\) :

Reaction rate constant at an infinitely diluted solution

\({m}_{{CO}_{2}, in}\), \({m}_{{CO}_{2}, out}\) :

CO2 mass at the inlet and outlet, respectively

\({N}_{{CO}_{2}}\) :

Overall CO2 absorption rate

\({P}_{{CO}_{2}}\) :

CO2 partial pressure in the feed gas

\({P}_{{CO}_{2}}^{*}\) :

CO2 partial pressure at equilibrium with the CO2 concentration in the liquid phase

\({U}_{G}\) :

Superficial gas velocity

\({V}_{b}\) :

Volume of the solution

\({z}_{i}\) :

Charge for individual ions in the solution

\({\epsilon }_{b}\) :

Gas hold-up

\({\mu }_{w}\), \({\mu }_{L}\) :

Viscosities of water and NaOH solution, respectively

\({\Delta }\rho\) :

Density difference between the gas and liquid

\(\sigma\) :

Surface tension

References

  1. Goode JH, Stacy RG, Vaughen VCA (1980) Head-end reprocessing studies of HB Robinson-2 fuel: II. Parametric voloxidation studies, ORNL/TM-6888. Oak Ridge National Laboratory

  2. Laidler JJ, Battles JE, Miller WE, Ackerman JP, Carls EL (1997) Development of pyroprocessing technology. Prog Nucl Energy 31:131–140

    Article  CAS  Google Scholar 

  3. Yang JH, Han A, Yoon JY, Park HS, Cho YZ (2017) A new route to stable capture and final immobilization of radioactive cesium. J Hazard Mater 339:73–81

    Article  CAS  Google Scholar 

  4. Yang JH, Yoon JY, Hong SM, Lee JH, Cho YZ (2019) An efficient capture of cesium from cesium iodide (CsI) off-gas by aluminosilicate sorbents in the presence of oxygen. J Ind Eng Chem 77:146–153

    Article  CAS  Google Scholar 

  5. Chong S, Riley BJ, Peterson JA, Olszta MJ, Nelson ZJ (2020) Gaseous iodine sorbents: a comparison between Ag-loaded aerogel and xerogel scaffolds. ACS Appl Mater Interfaces 12:26127–26136

    Article  CAS  Google Scholar 

  6. Soelberg NR, Garn TG, Greenhalgh MR, Law JD, Jubin R, Strachan DM, Thallapally PK (2013) Radioactive iodine and krypton control for nuclear fuel reprocessing facilities. Sci Technol Nucl Install 2013:1–12

    Article  Google Scholar 

  7. Liu J, Strachan DM, Thallapally PK (2014) Enhanced noble gas adsorption in Ag@MOF-74Ni. Chem Commun 50:466–468

    Article  CAS  Google Scholar 

  8. Van Konynenburg RA (1994) Behavior of carbon-14 in waste packages for spent fuel in a tuff repository. Waste Manag 14:363–383

    Article  CAS  Google Scholar 

  9. IAEA (2004) Management of waste containing tritium and carbon-14. Technical Reports Series No. 421

  10. Mondal MK, Balsora HK, Varshney P (2012) Progress and trends in CO2 capture/separation technologies: a review. Energy 46:1438–1463

    Article  Google Scholar 

  11. Leung DYC, Caramann G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev 39:426–443

    Article  CAS  Google Scholar 

  12. Dutcher B, Fan M, Russell AG (2015) Amine-based CO2 capture technology development from the beginning of 2013: a review. ACS Appl Mater Interfaces 7:2137–2148

    Article  CAS  Google Scholar 

  13. Yaidya PD, Kenig EY (2007) CO2-alkanolamine reaction kinetics: a review of recent studies. Chem Eng Technol 30:1467–1474

    Article  Google Scholar 

  14. Zhang X, Zhang X, Dong H, Zhao Z, Zhang S, Huang Y (2012) Carbon capture with ionic liquids: overview and progress. Energy Environ Sci 5:6668–6681

    Article  CAS  Google Scholar 

  15. Ramdin M, de Loos TW, Vlugt TJH (2012) State-of-the-art of CO2 capture with ionic liquids. Ind Eng Chem Res 24:8149–8177

    Article  Google Scholar 

  16. Peng Y, Zhao B, Li L (2012) Advance in post-combustion CO2 capture with alkaline solution: a brief review. Energy Procedia 14:1515–1522

    Article  Google Scholar 

  17. Ochedi FO, Yu J, Yu H, Liu Y, Hussain A (2020) Carbon dioxide capture using liquid absorption methods: a review. Environ Chem Lett 19:77–109

    Article  Google Scholar 

  18. Aghaie M, Rezaei N, Zendehboudi S (2018) A systematic review on CO2 capture with ionic liquids: current status and future prospects. Renew Sust Energ Rev 96:502–525

    Article  CAS  Google Scholar 

  19. Shkrob IA, Marin TW, Luo H, Dai S (2013) Radiation stability of cations in ionic liquids, 1. Alkyl and benzyl derivatives of 5-membered ring heterocycles. J Phys Chem B 117:14372–14384

    Article  CAS  Google Scholar 

  20. Mahmoudkhani M, Heidel KR, Ferreira JC, Keith DW, Cherry RS (2009) Low energy packed tower and caustic recovery for direct capture of CO2 from air. Energy Procedia 1:1535–1542

    Article  CAS  Google Scholar 

  21. Ruiz C, Rincón L, Contreras RR, Sideny C, Almarza J (2020) Sustainable and negative carbon footprint solid-based NaOH technology for CO2 capture. ACS Sustain Chem Eng 8:19003–19012

    Article  CAS  Google Scholar 

  22. Zeman F (2007) Energy and material balance of CO2 capture from ambient air. Environ Sci Technol 41:7558–7563

    Article  CAS  Google Scholar 

  23. Hakkinen S (2019) Impurities in LWR fuel and structural materials, Research Report No. VTT-R-00184-20. VTT Technical Research Centre of Finland

  24. Mori S, Sakurai M, Suzuki M (2006) The recovery of carbon-14 from the graphite moderator of a dismantled gas-cooled reactor through plasma chemical reactions in CO glow discharge. J Nucl Sci Technol 43(4):432–436

    Article  CAS  Google Scholar 

  25. Versteeg GF, van Swaaij WPM (1988) Solubility and diffusivity of acid gases (CO2 and N2O) in aqueous alkalomamine solutions. J Chem Eng Data 33:29–34

    Article  CAS  Google Scholar 

  26. Pohorecki R, Moniuk W (1988) Kinetics of reaction between carbon dioxide and hydroxyl ions in aqueous electrolyte solutions. Chem Eng Sci 43:1677–1684

    Article  CAS  Google Scholar 

  27. Onda K, Sada E, Kobayashi T, Kito S, Ito K (1970) Salting-out parameters of gas solubility in aqueous salt solutions. J Chem Eng Japan 3:18–24

    Article  CAS  Google Scholar 

  28. Brauer H (1979) Particle/fluid transport processes. IET Circuits Devices Syst 17:61–99

    Google Scholar 

  29. Kumar A, Degaleesan TE, Laddha GS, Hoelscher HE (1976) Bubble swarm characteristics in bubble columns. Can J Chem Eng 54:503–508

    Article  CAS  Google Scholar 

  30. Wellek RM, Brunson RJ, Law FH (1978) Enhancement factors for gas-absorption with second-order irreversible chemical reaction. Can J Chem Eng 56:181–186

    Article  CAS  Google Scholar 

  31. Gabitto J, Tsouris C (2019) Determination of reactive mass transfer coefficients for CO2 absorption predictions. Sep Purif Technol 54:2026–2033

    CAS  Google Scholar 

  32. Croff AG, Bjerke MA, Morrison GW, Petrie LM (1978) Revised uranium-plutonium cycle PWR and BWR models for the ORIGEN computer code, ORNL/TM-6051. Oak Ridge National Laboratory

  33. Tait JC, Theaker JR (1996) Light element radionuclides in used fuel and their potential contribution to postclosure safety assessment. AECL-11431, Atomic Energy of Canada Limited

  34. Hudson PI, Buckley CP, Miller WW (1994) The development and design of the off-gas treatment system for the thermal oxide reprocessing plant (THORP) at Sellafield. Proceedings of the 23rd DOE/NRC nuclear air cleaning conference

  35. Sanz-Pérez ES, Murdock CR, Didas SA, Jones CW (2016) Direct capture of CO2 from ambient air. Chem Rev 116:11840–11876

    Article  Google Scholar 

  36. Song KC, Park GI, Lee JW, Park JJ, Yang MS (2008) Fractional release behavior of volatile and semivolatile fission products during a voloxidation and OREOX treatment of spent PWR fuel. Nucl Technol 162:158–168

    Article  CAS  Google Scholar 

  37. Li W, Zhao X, Liu B, Tang Z (2014) Mass transfer coefficients for CO2 absorption into aqueous ammonia using structured packing. Ind Eng Chem Res 53:6185–6196

    Article  CAS  Google Scholar 

  38. Sheng M, Sun B, Zhang F, Chu G, Zhang L, Liu C, Chen J, Zou H (2016) Mass-transfer characteristics of the CO2 absorption process in a rotating packed bed. Energy Fuels 30:4215–4220

    Article  CAS  Google Scholar 

  39. Varlam C, Stefanescu I, Varlam M, Popescu I, Faurescu I (2007) Applying the direct absorption method and LSC for 14C concentration measurement in aqueous samples. Radiocarbon 49(2):281–289

    Article  CAS  Google Scholar 

  40. Passmann JM, Radin NS, Cooper JAD (1956) Liquid Scintillation Technique for Measuring Carbon-14-Dioxide Activity. Anal Chem 28(4):484–486

    Article  CAS  Google Scholar 

  41. Ni M, Ratner BD (2008) Differentiating calcium carbonate polymorphs by surface analysis techniques-an XPS and TOF-SIMS study. Surf Interface Anal 40:1356–1361

    Article  CAS  Google Scholar 

  42. Baltrusaitis J, Usher CR, Grassian VH (2007) Reaction of sulfur dioxide on calcium carbonate single crystal and particle surfaces at the adsorbed water carbonate interface. Phys Chem Chem Phys 9:3011–3024

    Article  CAS  Google Scholar 

  43. Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by Powders and Porous Solids, 1st edn. Academic Press, London

    Google Scholar 

  44. Haga K, Sutou S, Hironaga M, Tanaka S, Nagasaki S (2005) Effects of porosity on leaching of Ca from hardened ordinary Portland cement paste. Cem Concr Res 35:1764–1775

    Article  CAS  Google Scholar 

  45. ANS (2019) Measurement of the leachability of solidified low-level radioactive wastes by a short-term test procedure. American Nuclear Standard, ANS–A16

Download references

Funding

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government (MOTIE) (20201520300140, Development of Advanced Functional Material with C-14 from PHWR Waste).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok-Min Hong.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest directly relevant to the content of this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 844 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, SM., Jang, H., Noh, S. et al. Management of carbon dioxide released from spent nuclear fuel through voloxidation. J Radioanal Nucl Chem 330, 695–705 (2021). https://doi.org/10.1007/s10967-021-07972-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07972-w

Keywords

Navigation