Skip to main content
Log in

Proline Exogenously Supplied or Endogenously Overproduced Induces Different Nutritional, Metabolic, and Antioxidative Responses in Transgenic Tobacco Exposed to Cadmium

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Proline plays adaptive roles in plant tolerance to cadmium (Cd)-induced stress, but many gaps remain to be elucidated as the responses triggered by exogenously supplied proline or endogenously overproduction are not well known. Thus, we assayed the nutritional status, metabolite profiling, and antioxidative responses in wild type and transgenic tobacco (Nicotiana tabacum L.) containing the P5CSF129A gene under control of the cauliflower mosaic virus (CaMV35S) or stress inducible rd29A promoters. The plants were exposed or unexposed to Cd (0 and 50 μmol L−1 CdCl2·H2O) for 24 and 72 h. The wild type plants were also treated with or without exogenous proline (1 mmol L−1). Plants supplied with exogenous proline exhibited lower Cd translocation from roots to leaves than plants overproducing proline, avoiding oxidative damages in the leaves of these plants. Meanwhile, tobacco overproducing proline was less susceptible to Cd-induced nutritional changes than wild type plants and presented better metabolic adjustment under Cd exposure compared to plants supplied with exogenous proline. Plants overproducing proline increased the synthesis of sugars and organic acids under Cd exposure, which contributed to absence of oxidative stress, since both superoxide dismutase and catalase were not active against Cd-induced oxidative stress in these genotypes. Plants overproducing proline under the control of rd29A presented higher proline concentration in comparison to the CaMV35S promoter. With exception of rd29A plants that presented high proline and reduced glutathione (GSH) concentrations, the other plants presented an inverse correlation between proline and GSH synthesis after 72 h of Cd exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  • Aleksza D, Horváth GV, Sándor HG, Szabados L (2017) Proline accumulation is regulated by transcription factors associated with phosphate starvation. Plant Physiol 175:555–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344

    Article  CAS  Google Scholar 

  • Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol 113:548–555

    Article  CAS  PubMed  Google Scholar 

  • Azevedo RA, Alas RM, Smith RJ, Lea PJ (1998) Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiol Plant 104:280–292

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bertoli AC, Cannata MG, Carvalho R, Bastos ARR, Freitas MP, Augusto AS (2012) Lycopersicon esculentum submitted to Cd-stressful conditions in nutrition solution: nutrient contents and translocation. Ecotoxicol Environ Saf 86:176–181

    Article  Google Scholar 

  • Borges KLR, Salvato F, Alcântara BK, Nalin RS, Piotto FA, Azevedo RA (2018) Temporal dynamic responses of roots in contrasting tomato genotypes to cadmium tolerance. Ecotoxicology 27:245–258

    Article  CAS  PubMed  Google Scholar 

  • Borgo L, Marur CJ, Vieira LGE (2015) Effects of high proline accumulation on chloroplast and mitochondrial ultrastructure and on osmotic adjustment in tobacco plants. Acta Sci Agron 37:191–199

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing principle of protein-dye-binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brunetti P, Zanella L, De Paolis A, Di Litta D, Cecchetti V, Falasca G, Barbieri M, Altamura MM, Costantino P, Cardarelli M (2015) Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis. J Exp Bot 66:3815–3829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho MEA, Castro PRC, Kozak M, Azevedo RA (2020) The sweet side of misbalanced nutrients in cadmium-stressed plants. Ann Appl Biol 176:275–284

    Article  CAS  Google Scholar 

  • Chen A, Husted S, Salt DE, Schjoerring JK, Persson DP (2019) The intensity of manganese deficiency strongly affects root endodermal suberization and ion homeostasis. Plant Physiol 181:729–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, Wishart DS, Xia J (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res 46:W486-494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  CAS  PubMed  Google Scholar 

  • Cuadros-Inostroza A, Caldana C, Redestig H, Kusano M, Lisec J, Pena-Cortes H, Willmitzer L, Hannah MA (2009) TargetSearch—a bioconductor package for the efficient preprocessing of GC-MS metabolite profiling data. BMC Bioinform 10:428

    Article  Google Scholar 

  • Cuypers A, Vangronsveld J, Clijsters H (2002) Peroxidases in roots and primary leaves of Phaseolus vulgaris Copper and zinc phytotoxicity: a comparison. J Plant Physiol 159:869–876

    Article  CAS  Google Scholar 

  • Dobrá J, Vanková R, Havlová M, Burman AJ, Libus J, Štorchová H (2011) Tobacco leaves and roots differ in the expression of proline metabolism-related genes in the course of drought stress and subsequent recovery. J Plant Physiol 168:1588–1597

    Article  PubMed  Google Scholar 

  • Fässler E, Plaza S, Pairraud A, Gupta SK, Robinson B, Schulin R (2011) Expression of selected genes involved in cadmium detoxification in tobacco plants grown on a sulphur-amended metal-contaminated field. Environ Exp Bot 70:158–165

    Article  Google Scholar 

  • Gagneul D, Aïnouche A, Duhazé C, Lugan R, Larher FR, Bouchereau A (2007) A reassessment of the function of the so-called compatible solutes in the halophytic Plumbaginaceae Limonium latifolium. Plant Physiol 144:1598–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46

    Article  CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases. Plant Physiol 59:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hendrix S, Jozefczak M, Wójcik M, Deckers J, Vangronsveld J, Cuypers A (2020a) Glutathione: A key player in metal chelation, nutrient homeostasis, cell cycle regulation and the DNA damage response in cadmium-exposed Arabidopsis thaliana. Plant Physiol Biochem 154:498–507

    Article  CAS  PubMed  Google Scholar 

  • Hendrix S, Iven V, Eekhout T, Huybrechts M, Pecqueur I, Horemans N, Keunen E, De Veylder L, Vangronsveld J, Cuypers A (2020b) Suppressor of Gamma Response 1 modulates the DNA damage response and oxidative stress response in leaves of cadmium-exposed Arabidopsis thaliana. Front Plant Sci 11:366

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoagland D, Arnon DI (1950) The water culture method for growing plants without soil. California Agriculture Experimental Station, Berkeley

    Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of ∆1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iannone MF, Groppa MD, Benavides MP (2015) Cadmium induces different biochemical responses in wild type and catalase-deficient tobacco plants. Environ Exp Bot 109:201–211

    Article  CAS  Google Scholar 

  • Islam MM, Hoque MA, Okuma E, Banu MNA, Shimoishi Y, Nakamura Y, Murata Y (2009) Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. J Plant Physiol 166:1587–1597

    Article  CAS  PubMed  Google Scholar 

  • Jozefczak M, Bohler S, Schat H, Horemans N, Guisez Y, Remans T, Vangronsveld J, Cuypers A (2015) Both the concentration and redox state of glutathione and ascorbate influence the sensitivity of arabidopsis to cadmium. Ann Bot 116:601–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karalija E, Selović A (2018) The effect of hydro and proline seed priming on growth, proline and sugar content, and antioxidant activity of maize under cadmium stress. Environ Sci Pollut Res 25:33370–33380

    Article  CAS  Google Scholar 

  • Keunen E, Peshev D, Vangrosveld J, Van den Ende W, Cuypers A (2013) Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ 36:1242–1255

    Article  CAS  PubMed  Google Scholar 

  • Keunen E, Schellingen K, Straeten DVD, Remans T, Colpaert J, Vangronsveld J, Cuypers A (2015) ALTERNATIVE OXIDASE1a modulates the oxidative challenge during moderate Cd exposure in Arabidopsis thaliana leaves. J Exp Bot 66:2967–2977

    Article  CAS  PubMed  Google Scholar 

  • Kim D-Y, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50:207–218

    Article  CAS  PubMed  Google Scholar 

  • Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, Dormann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D (2005) GMD@CSB.DB: the Golm metabolome database. Bioinformatics 21:1635–1638

    Article  CAS  PubMed  Google Scholar 

  • Kraus TE, McKersie BD, Fletcher RA (1995) Paclobutrazol-induced tolerance of wheat leaves to paraquat may involve increased antioxidant enzyme activity. J Plant Physiol 145:570–576

    Article  CAS  Google Scholar 

  • Kumar V, Shriram V, Kishor PBK, Jawali N, Shitole MG (2010) Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene. Plant Biotechnol Rep 4:37–48

    Article  Google Scholar 

  • Lavres J, Rabêlo FHS, Capaldi FR, Reis AR, Rossi ML, Franco MR, Azevedo RA, Abreu-Junior CH, Nogueira NL (2019) Investigation into the relationship among Cd bioaccumulation, nutrient composition, ultrastructural changes and antioxidative metabolism in lettuce genotypes under Cd stress. Ecotoxicol Environ Saf 170:578–589

    Article  CAS  PubMed  Google Scholar 

  • Martins LL, Mourato MP, Baptista S, Reis R, Carvalheiro F, Almeida AM, Fevereiro P, Cuypers A (2014) Response to oxidative stress induced by cadmium and copper in tobacco plants (Nicotiana tabacum) engineered with the trehalose-6-phosphate synthase gene (AtTPS1). Acta Physiol Plant 36:755–765

    Article  CAS  Google Scholar 

  • Mendoza-Cózatl DG, Moreno-Sánchez R (2006) Control of glutathione and phytochelatin synthesis under cadmium stress. Pathway modeling for plants. J Theor Biol 238:919–936

    Article  PubMed  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neuker-Mans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    Article  CAS  PubMed  Google Scholar 

  • Obata T, Fernie AR (2012) The use of metabolomics to dissect plant responses to abiotic stresses. Cell Mol Life Sci 69:3225–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Queval G, Jaillard D, Zechmann B, Noctor G (2011) Increased intracellular H2O2 availability preferentially drives glutathione accumulation in vacuoles and chloroplasts. Plant Cell Environ 34:21–32

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R foundation for statistical computing. Vienna-Austria. https://cran.r-project.org/bin/windows/base/old/3.0.2/

  • Repkina N, Talanova V, Ignatenko A, Titov A (2019) Involvement of proline and non-protein thiols in response to low temperature and cadmium stresses in wheat. Biol Plant 63:70–77

    Article  CAS  Google Scholar 

  • Schauer N, Steinhauser D, Strelkov S, Schomburg D, Allison G, Moritz T, Lundgren K, Roessner-Tunali U, Forbes MG, Willmitzer L, Fernie AR, Kopka J (2005) GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett 579:1332–1337

    Article  CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz K (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    Article  CAS  PubMed  Google Scholar 

  • Sharmila P, Kumari PK, Singh K, Prasad NVSRK, Pardha-Saradhi P (2017) Cadmium toxicity-induced proline accumulation is coupled to iron depletion. Protoplasma 254:763–770

    Article  CAS  PubMed  Google Scholar 

  • SIGMAPLOT (2006) SigmaPlot for Windows Version 10.0. Systat Software. Berkshire-UK. http://www.sigmaplot.co.uk/products/sigmaplot/produpdates/prod-updates3.php

  • Siripornadulsil S, Train S, Verma DPS, Sayre RT (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14:2837–2847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5,5’-dithilbis (2-nitrobenzoic acid). Anal Biochem 175:408–413

    Article  CAS  PubMed  Google Scholar 

  • Soares C, Carvalho MEA, Azevedo RA, Fidalgo F (2019) Plants facing oxidative challenges—a little help from the antioxidant networks. Environ Exp Bot 161:4–25

    Article  CAS  Google Scholar 

  • Stiefel V, Pérez-Grau L, Albericio F, Giralt E, Ruiz-Avila L, Ludevid MD, Puigdomènech P (1988) Molecular cloning of cDNAs encoding a putative cell wall protein from Zea mays and immunological identification of related polypeptides. Plant Mol Biol 11:483–493

    Article  CAS  PubMed  Google Scholar 

  • Sun R, Zhou Q, Jin C (2006) Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. Plant Soil 285:125–134

    Article  CAS  Google Scholar 

  • Sun X, Zhang J, Zhang H, Ni Y, Zhang Q, Chen J, Guan Y (2010) The responses of Arabidopsis thaliana to cadmium exposure explored via metabolite profiling. Chemosphere 78:840–845

    Article  CAS  PubMed  Google Scholar 

  • Van den Ende W, Valluru R (2009) Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J Exp Bot 60:9–18

    Article  PubMed  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  CAS  PubMed  Google Scholar 

  • Vögeli-Lange R, Wagner GJ (1996) Relationship between cadmium, glutathione and cadmium-binding peptides (phytochelatins) in leaves of intact tobacco seedlings. Plant Sci 114:11–18

    Article  Google Scholar 

  • Wojas S, Clemens S, Hennig J, Skłodowska A, Kopera E, Schat H, Bal W, Antosiewicz DM (2008) Overexpression of phytochelatin synthase in tobacco: distinctive effects of AtPCS1 and CePCS genes on plant response to cadmium. J Exp Bot 59:2205–2219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    Article  CAS  Google Scholar 

  • Ye X, Ling T, Xue Y, Xu C, Zhou W, Hu L, Chen J, Shi Z (2016) Thymol mitigates cadmium stress by regulating glutathione levels and reactive oxygen species homeostasis in tobacco seedlings. Molecules 21:1339–1353

    Article  PubMed Central  Google Scholar 

  • Zdunek-Zastocka E, Grabowska A, Michniewska B, Orzechowski S (2021) Proline concentration and its metabolism are regulated in a leaf age dependent manner but not by abscisic acid in pea plants exposed to cadmium stress. Cells 10:946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Zhao J, Zhao C, Zhou H, Li Y, Zhang J, Li L, Hu C, Li W, Peng X, Lu X, Lin F, Xu G (2015) A metabolomics study delineating geographical location-associated primary metabolic changes in the leaves of growing tobacco plants by GC-MS and CE-MS. Sci Rep 9:16346

    Article  Google Scholar 

  • Zhao J, Zhao Y, Hu C, Zhao C, Zhang J, Li L, Zeng J, Peng X, Lu X, Xu G (2016) Metabolic profiling with gas chromatography–mass spectrometry and capillary electrophoresis–mass spectrometry reveals the carbon–nitrogen status of tobacco leaves across different planting areas. J Proteome Res 15:468–476

    Article  CAS  PubMed  Google Scholar 

  • Zouari M, Ahmed CB, Elloumi N, Bellassoued K, Delmail D, Labrousse P, Abdallah FB, Rouina BB (2016) Impact of proline application on cadmium accumulation, mineral nutrition and enzymatic antioxidant defense system of Olea europaea L. cv Chemlali exposed to cadmium stress. Ecotoxicol Environ Saf 128:195–205

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Council for Scientific and Technological Development—CNPq, Brazil [Grant Number #150260/2017-2]; and the Research Foundation Flanders—FWO, Belgium [Grant Number #BOF16KV06].

Author information

Authors and Affiliations

Authors

Contributions

LB conducted the research and wrote the manuscript. FHSR helped to write the manuscript. IGFB, TRC, and CAL performed the analyzes concerning metabolite profile. TGR performed the statistical analysis. PDCS, AFR, and JL helped to analyze the results and review the manuscript. AN and RAA concepted the study and reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lucélia Borgo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling Editor: Mikihisa Umehara.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 74 kb)

Supplementary file2 (XLSX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borgo, L., Rabêlo, F.H.S., Budzinski, I.G.F. et al. Proline Exogenously Supplied or Endogenously Overproduced Induces Different Nutritional, Metabolic, and Antioxidative Responses in Transgenic Tobacco Exposed to Cadmium. J Plant Growth Regul 41, 2846–2868 (2022). https://doi.org/10.1007/s00344-021-10480-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-021-10480-6

Keywords

Navigation