Skip to main content

Advertisement

Log in

Chemical Effects of Snowmelt on an Alpine Lake in the Wind River Range, WY

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Nitrogen deposition from air pollution is increasingly reaching alpine lakes where the addition of nitrate and ammonium to sensitive surface waters can cause acidification and/or eutrophication. Thirty years of sampling in the Wind River Range, WY, has shown some lakes increasing in nitrogen. We sought to (1) determine if nutrient concentrations in Deep Lake increase during snowmelt when atmospheric deposition is released from the snowpack and (2) assess if the sampling season, location, meteorological factors, and time of day samples are collected influence lake chemistry metrics, to inform monitoring. We analyzed water samples from the outlet of Deep Lake in peak snowmelt (June) and from the inlet, outlet, and middle of Deep Lake when the basin was snow free (August). In June, outlet samples were more acidic, and nitrogen content was three times August levels. Acid neutralizing capacity (ANC) declined with snowmelt. August inlet samples were higher in nutrients than outlet and mid-lake samples. Our results indicate that atmospheric pollution in the snowpack enters the lake with snowmelt. Although Deep Lake has not acidified, ANC levels indicate a risk of episodic acidification if nitrogen deposition continues to increase. When monitoring lakes at risk for episodic acidification, sampling during the late snowmelt pulse should be prioritized. Simplified sampling protocols may be used in some lakes, as epilimnion and outlet samples were nearly identical. The time of day and cloud cover did not affect lake chemistry, while wind speed and precipitation weakly increased August ANC and June pH, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data are available at https://doi.org/10.5061/dryad.8pk0p2nn1 through the Dryad digital repository.

Code Availability

All statistical analyses were performed in program R.

References

  • Baron, J. S., Allstott, E. J., & Newkirk, B. K. (1995). Analysis of long term sulfate and nitrate budgets in a Rocky Mountain basin. In K. A. Tonnessen, M. W. Williams, & M. Tranter (Eds.), Biogeochemistry of seasonally snow-covered catchments. (Vol. 228, pp. 255–262). Wallingford, Oxfordshire, OX10 8BB, UK: International Association of Hydrologic Sciences Press.

  • Baron, J. S., & Campbell, D. H. (1997). Nitrogen fluxes in a high elevation colorado rocky mountain basin. Hydrological Processes, 11(7), 783–799. https://doi.org/10.1002/(SICI)1099-1085(199706)11:7%3c783::AID-HYP519%3e3.0.CO;2-U

  • Baron, J. S., Driscoll, C. T., Stoddard, J. L., & Richer, E. E. (2011). Empirical critical loads of atmospheric nitrogen deposition for nutrient enrichment and acidification of sensitive US lakes. BioScience, 61(8), 602–613. https://doi.org/10.1525/bio.2011.61.8.6

    Article  Google Scholar 

  • Baron, J. S., Rueth, H. M., Wolfe, A. M., Nydick, K. R., Allstott, E. J., Minear, J. T., & Moraska, B. (2000). Ecosystem responses to nitrogen deposition in the Colorado Front Range. Ecosystems, 3(4), 352–368. https://doi.org/10.1007/s100210000032

    Article  CAS  Google Scholar 

  • Benedict, K. B., Chen, X., Sullivan, A. P., Li, Y., Day, D., Prenni, A. J., et al. (2013a). Atmospheric concentrations and deposition of reactive nitrogen in Grand Teton National Park: Reactive N in Grand Teton National Park. Journal of Geophysical Research: Atmospheres, 118(20), 11875–11887. https://doi.org/10.1002/2013JD020394

    Article  CAS  Google Scholar 

  • Benedict, K. B., Day, D., Schwandner, F. M., Kreidenweis, S. M., Schichtel, B., Malm, W. C., & Collett, J. L. (2013b). Observations of atmospheric reactive nitrogen species in Rocky Mountain National Park and across northern Colorado. Atmospheric Environment, 64, 66–76. https://doi.org/10.1016/j.atmosenv.2012.08.066

    Article  CAS  Google Scholar 

  • Bergström, A.-K. (2010). The use of TN:TP and DIN:TP ratios as indicators for phytoplankton nutrient limitation in oligotrophic lakes affected by N deposition. Aquatic Sciences, 72(3), 277–281. https://doi.org/10.1007/s00027-010-0132-0

    Article  Google Scholar 

  • Bergström, A.-K., & Jansson, M. (2006). Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Global Change Biology, 12(4), 635–643. https://doi.org/10.1111/j.1365-2486.2006.01129.x

    Article  Google Scholar 

  • Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., et al. (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecological Applications, 20(1), 30–59. https://doi.org/10.1890/08-1140.1

    Article  CAS  Google Scholar 

  • Bolks, A., DeWire, A., & Harcum. (2014). Baseline assessment of left-censored environmental data using R. Tech Notes, 10. https://www.epa.gov/sites/production/files/2016-05/documents/tech_notes_10_jun2014_r.pdf

  • Brahney, J., Ballantyne, A. P., Kociolek, P., Leavitt, P. R., Farmer, G. L., & Neff, J. C. (2015a). Ecological changes in two contrasting lakes associated with human activity and dust transport in western Wyoming: Dust-P controls on alpine lake ecology. Limnology and Oceanography, 60(2), 678–695. https://doi.org/10.1002/lno.10050

    Article  Google Scholar 

  • Brahney, J., Ballantyne, A. P., Kociolek, P., Spaulding, S., Otu, M., Porwoll, T., & Neff, J. C. (2014). Dust mediated transfer of phosphorus to alpine lake ecosystems of the Wind River Range, Wyoming, USA. Biogeochemistry, 120(1–3), 259–278. https://doi.org/10.1007/s10533-014-9994-x

    Article  CAS  Google Scholar 

  • Brahney, Janice. (2012). The influence of anthropogenic dust emissions on precipitation chemistry and lake biogeochemistry (PhD Thesis). University of Colorado.

  • Brahney, J., Ballantyne, A. P., Kociolek, P., Leavitt, P. R., Farmer, G. L., & Neff, J. C. (2015b). Ecological changes in two contrasting lakes associated with human activity and dust transport in western Wyoming. Limnology and Oceanography, 60(2), 678–695. https://doi.org/10.1002/lno.10050

    Article  Google Scholar 

  • Brooks, P. D., Campbell, D. H., Tonnessen, K. A., & Heuer, K. (1999). Natural variability in N export from headwater catchments: Snow cover controls on ecosystem N retention. Hydrological Processes, 13(11), 2191–2201. https://doi.org/10.1002/(SICI)1099-1085(199910)13:14/15%3c2191::AID-HYP849%3e3.0.CO;2-L

  • Burns, D. A. (2004). The effects of atmospheric nitrogen deposition in the Rocky Mountains of Colorado and southern Wyoming, USA - a critical review. Environmental Pollution, 127(2), 257–269. https://doi.org/10.1016/S0269-7491(03)00264-1

    Article  CAS  Google Scholar 

  • Burns, D. A. (2003). Atmospheric nitrogen deposition in the Rocky Mountains of Colorado and southern Wyoming—a review and new analysis of past study results. Atmospheric Environment, 37(7), 921–932. https://doi.org/10.1016/S1352-2310(02)00993-7

    Article  CAS  Google Scholar 

  • Caine, N. (1992). Modulation of the diurnal streamflow response by the seasonal snowcover of an alpine basin. Journal of Hydrology, 137(1–4), 245–260. https://doi.org/10.1016/0022-1694(92)90059-5

    Article  Google Scholar 

  • Camargo, J. A., & Alonso, Á. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environment International, 32(6), 831–849. https://doi.org/10.1016/j.envint.2006.05.002

    Article  CAS  Google Scholar 

  • Campbell, D. H., Baron, J. S., Tonnessen, K. A., Brooks, P. D., & Schuster, P. F. (2000). Controls on nitrogen flux in alpine/subalpine watersheds of Colorado. Water Resources Research, 36(1), 37–47. https://doi.org/10.1029/1999WR900283

    Article  CAS  Google Scholar 

  • Campbell, D. H., Clow, D. W., Ingersoll, G. P., Mast, M. A., Spahr, N. E., & Turk, J. T. (1995). Processes controlling the chemistry of two snowmelt-dominated streams in the Rocky Mountains. Water Resources Research, 31(11), 2811–2821. https://doi.org/10.1029/95WR02037

    Article  CAS  Google Scholar 

  • Clean Air Act., 42 U.S.C. § 7475 (d) (B) (2013) (1970).

  • Clow, D. W., Sickman, J. O., Striegl, R. G., Krabbenhoft, D. P., Elliott, J. G., Dornblaser, M., Roth, D. A., & Campbell, D. H. (2003). Changes in the chemistry of lakes and precipitation in high-elevation national parks in the western United States, 1985–1999. Water Resources Research, 39(6), 1171. https://doi.org/10.1029/2002WR001533

    Article  CAS  Google Scholar 

  • Clow, D. W., Williams, M. W., & Schuster, P. F. (2016). Increasing aeolian dust deposition to snowpacks in the Rocky Mountains inferred from snowpack, wet deposition, and aerosol chemistry. Atmospheric Environment, 146, 183–194. https://doi.org/10.1016/j.atmosenv.2016.06.076

    Article  CAS  Google Scholar 

  • Clow, D. W., & Drever, J. I. (1996). Weathering rates as a function of flow through an alpine soil. Chemical Geology, 132(1–4), 131–141. https://doi.org/10.1016/S0009-2541(96)00048-4

    Article  CAS  Google Scholar 

  • Denning, A. S., Baron, J., Mast, M. A., & Arthur, M. (1991). Hydrologic pathways and chemical composition of runoff during snowmelt in Loch Vale Watershed, Rocky Mountain National Park, Colorado, USA. Water, Air, and Soil Pollution, 59(1–2). https://doi.org/10.1007/BF00283175

  • Doka, S. E., Mcnicol, D. K., Mallory, M. L., Wong, I., Minns, C. K., & Yan, N. D. (2003). Assessing potential for recovery of biotic richness and indicator species due to changes in acidic deposition and lake pH in five areas of southeastern Canada. Environmental Monitoring and Assessment, 88(1), 53–101. https://doi.org/10.1023/A:1025548518991

    Article  CAS  Google Scholar 

  • Downing, J. A., & McCauley, E. (1992). The nitrogen : Phosphorus relationship in lakes. Limnology and Oceanography, 37(5), 936–945. https://doi.org/10.4319/lo.1992.37.5.0936

  • Dunne, T., & Black, R. D. (1971). Runoff processes during snowmelt. Water Resources Research, 7(5), 1160–1172. https://doi.org/10.1029/WR007i005p01160

    Article  Google Scholar 

  • Elser, J. J., Andersen, T., Baron, J. S., Bergström, A.-K., Jansson, M., Kyle, M., et al. (2009). Shifts in lake N: P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science, 326(5954), 835–837. https://doi.org/10.1126/science.1176199

    Article  CAS  Google Scholar 

  • Fenn, M. E., Baron, J. S., Allen, E. B., Rueth, H. M., Nydick, K. R., Geiser, L., et al. (2003). Ecological effects of nitrogen deposition in the Western United States. BioScience, 53(4), 404. https://doi.org/10.1641/0006-3568(2003)053[0404:EEONDI]2.0.CO;2

    Article  Google Scholar 

  • Foster, J., & Hall, D. (1981). Multisensor analysis of hydrologic features with emphasis on the Seasat SAR. Photogrammetric Engineering and Remote Sensing, 47(5), 655–664.

    Google Scholar 

  • Frost, C. D., Frost, B. R., Chamberlain, K. R., & Hulsebosch, T. P. (1998). The Late Archean history of the Wyoming province as recorded by granitic magmatism in the Wind River Range Wyoming. Precambrian Research, 89(3–4), 145–173. https://doi.org/10.1016/S0301-9268(97)00082-x

    Article  CAS  Google Scholar 

  • Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., et al. (2008). Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320(5878), 889–892. https://doi.org/10.1126/science.1136674

    Article  CAS  Google Scholar 

  • Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R. W., Cowling, E. B., & Cosby, B. J. (2003). The nitrogen cascade. BioScience, 53(4), 341. https://doi.org/10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2

    Article  Google Scholar 

  • Geiser, L. H., Nelson, P. R., Jovan, S. E., Root, H. T., & Clark, C. M. (2019). Assessing ecological risks from atmospheric deposition of nitrogen and sulfur to US forests using epiphytic macrolichens. Diversity, 11(6), 87. https://doi.org/10.3390/d11060087

    Article  CAS  Google Scholar 

  • Grenon, J., Svalber, T., Porwoll, T., & Story, M. (2010). Lake and bulk sampling chemistry, NADP, and IMPROVE air quality data analysis on the Bridger-Teton National Forest (USFS Region 4). General Technical Report RMRS-GTR_248. Fort Collins, CO: US Forest Service Rocky Mountain Research Station. 44 p.

  • Hall, D. K., Crawford, C. J., DiGirolamo, N. E., Riggs, G. A., & Foster, J. L. (2015). Detection of earlier snowmelt in the Wind River Range, Wyoming, using Landsat imagery, 1972–2013. Remote Sensing of Environment, 162, 45–54. https://doi.org/10.1016/j.rse.2015.01.032

    Article  Google Scholar 

  • Hall, D. K., Foster, J. L., DiGirolamo, N. E., & Riggs, G. A. (2012). Snow cover, snowmelt timing and stream power in the Wind River Range Wyoming. Geomorphology, 137(1), 87–93. https://doi.org/10.1016/j.geomorph.2010.11.011

    Article  Google Scholar 

  • Heath, J., & Baron, J. S. (2014). Climate, not atmospheric deposition, drives the biogeochemical mass-balance of a mountain watershed. Aquatic Geochemistry, 20(2–3), 167–181. https://doi.org/10.1007/s10498-013-9199-2

    Article  CAS  Google Scholar 

  • Hoffman, A. S., Albeke, S. E., McMurray, J. A., Evans, R. D., & Williams, D. G. (2019). Nitrogen deposition sources and patterns in the Greater Yellowstone Ecosystem determined from ion exchange resin collectors, lichens, and isotopes. Science of the Total Environment, 683, 709–718. https://doi.org/10.1016/j.scitotenv.2019.05.323

    Article  CAS  Google Scholar 

  • Horn, K. J., Thomas, R. Q., Clark, C. M., Pardo, L. H., Fenn, M. E., Lawrence, G. B., et al. (2018). Growth and survival relationships of 71 tree species with nitrogen and sulfur deposition across the conterminous US. PLoS ONE, 13(10), e0205296. https://doi.org/10.1371/journal.pone.0205296

    Article  CAS  Google Scholar 

  • Hundey, E. J., Moser, K. A., Longstaffe, F. J., Michelutti, N., & Hladyniuk, R. (2014). Recent changes in production in oligotrophic Uinta Mountain lakes, Utah, identified using paleolimnology. Limnology and Oceanography, 59(6), 1987–2001. https://doi.org/10.4319/lo.2014.59.6.1987

    Article  Google Scholar 

  • Hundey, E. J., Russell, S. D., Longstaffe, F. J., & Moser, K. A. (2016). Agriculture causes nitrate fertilization of remote alpine lakes. Nature Communications, 7(1), 10571. https://doi.org/10.1038/ncomms10571

    Article  CAS  Google Scholar 

  • Hutchinson, G. E. (1975). A Treatise on Limnology. John Wiley & Sons.

    Google Scholar 

  • Ingersoll, G. P., Miller, D. C., Morris, K. H., McMurray, J. A., Port, G., & Caruso, B. S. (2016). Changing regional emissions of airborne pollutants reflected in the chemistry of snowpacks and wetfall in the Rocky Mountain region, USA, 1993–2012. Water, Air, & Soil Pollution, 227(3), 94. https://doi.org/10.1007/s11270-016-2784-4

    Article  CAS  Google Scholar 

  • Johannessen, M., & Henriksen, A. (1978). Chemistry of snow meltwater: Changes in concentration during melting. Water Resources Research, 14(4), 615–619.

    Article  CAS  Google Scholar 

  • Landers, D. H., Eilers, J. M., Brakke, D. F., Overton, W. S., & Kellar, P. E. (1987). Western lake survey phase I: characteristics of lakes in the western United States. Population descriptions and physico-chemical relationships. Vol. 1. US Environmental Protection Agency, Office of Research and Development.

  • Lerman, A., Imboden, D. M., Gat, J., & Chou, L. (1995). Physics and chemistry of lakes (2nd ed.). Springer-Verlag.

  • Lewis, W. M., & Wurtsbaugh, W. A. (2008). Control of lacustrine phytoplankton by nutrients: Erosion of the phosphorus paradigm. International Review of Hydrobiology, 93(4–5), 446–465. https://doi.org/10.1002/iroh.200811065

    Article  CAS  Google Scholar 

  • Likens, G. E., & Bormann, F. H. (1995). Biogeochemistry of a forested ecosystem. Springer-Verlag.

  • Liu, F., Williams, M. W., & Caine, N. (2004). Source waters and flow paths in an alpine catchment, Colorado Front Range, United States. Water Resources Research40(9). https://doi.org/10.1029/2004WR003076

  • Lutz, S., Anesio, A. M., Field, K., & Benning, L. G. (2015). Integrated ‘omics’, targeted metabolite and single-cell analyses of Arctic snow algae functionality and adaptability. Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.01323

  • Mast, M. A., Clow, D. W., Baron, J. S., & Wetherbee, G. A. (2014). Links between N deposition and nitrate export from a high-elevation watershed in the Colorado Front Range. Environmental Science & Technology, 48(24), 14258–14265. https://doi.org/10.1021/es502461k

    Article  CAS  Google Scholar 

  • Mast, M. A., Drever, J. I., & Baron, J. (1990). Chemical weathering in the Loch Vale watershed, Rocky Mountain National Park Colorado. Water Resources Research, 26(12), 2971–2978. https://doi.org/10.1029/WR026i012p02971

  • Mast, M. A., Turk, J. T., Ingersoll, G. P., Clow, D. W., & Kester, C. L. (2001). Use of stable sulfur isotopes to identify sources of sulfate in Rocky Mountain snowpacks. Atmospheric Environment, 35(19), 3303–3313. https://doi.org/10.1016/S1352-2310(00)00507-0

    Article  CAS  Google Scholar 

  • McCutcheon, J., Lutz, S., Williamson, C., Cook, J. M., Tedstone, A. J., Vanderstraeten, A., et al. (2021). Mineral phosphorus drives glacier algal blooms on the Greenland ice sheet. Nature Communications, 12(1), 570. https://doi.org/10.1038/s41467-020-20627-w

    Article  CAS  Google Scholar 

  • McMurray, J. A., Roberts, D. W., Fenn, M. E., Geiser, L. H., & Jovan, S. (2013). Using epiphytic lichens to monitor nitrogen deposition near natural gas drilling operations in the Wind River Range, WY, USA. Water, Air, & Soil Pollution, 224(3), 1487. https://doi.org/10.1007/s11270-013-1487-3

    Article  CAS  Google Scholar 

  • McMurray, J. A., McDonnell, T. C., Mebane, A. E., Pardo, L. H. (in press). Assessment of atmospheric nitrogen and sulfur deposition critical loads for aquatic and terrestrial resources on National Forest System lands in the Intermountain Region. General Technical Report NRS-GTR_204. Madison, WI: U.S. Forest Service Northern Research Station. https://doi.org/10.2737/NRS-GTR-204

  • Meszaros, E. (1966). On the origin and composition of atmospheric calcium compounds. Tellus, 18(2–3), 262–265. https://doi.org/10.1111/j.2153-3490.1966.tb00235.x

    Article  CAS  Google Scholar 

  • Mladenov, N., Williams, M. W., Schmidt, S. K., & Cawley, K. (2012). Atmospheric deposition as a source of carbon and nutrients to an alpine catchment of the Colorado Rocky Mountains. Biogeosciences, 9(8), 3337–3355. https://doi.org/10.5194/bg-9-3337-2012

    Article  CAS  Google Scholar 

  • Morel, F. M. M., & Hering, J. (1993). Principles and applications of aquatic chemistry. Wiley.

    Google Scholar 

  • Morris, D. P., & Lewis, W. M. (1988). Phytoplankton nutrient limitation in Colorado mountain lakes. Freshwater Biology, 20(3), 315–327. https://doi.org/10.1111/j.1365-2427.1988.tb00457.x

    Article  Google Scholar 

  • Musselman, R. C., & Slauson, W. L. (2004). Water chemistry of high elevation Colorado wilderness lakes. Biogeochemistry, 71(3), 387–414. https://doi.org/10.1007/s10533-004-0369-6

    Article  CAS  Google Scholar 

  • Nanus, L., McMurray, J. A., Clow, D. W., Saros, J. E., Blett, T., & Gurdak, J. J. (2017). Spatial variation of atmospheric nitrogen deposition and critical loads for aquatic ecosystems in the Greater Yellowstone Area. Environmental Pollution, 223, 644–656. https://doi.org/10.1016/j.envpol.2017.01.077

    Article  CAS  Google Scholar 

  • Nanus, L., Clow, D. W., Saros, J. E., Stephens, V. C., & Campbell, D. H. (2012). Mapping critical loads of nitrogen deposition for aquatic ecosystems in the Rocky Mountains, USA. Environmental Pollution, 166, 125–135. https://doi.org/10.1016/j.envpol.2012.03.019

    Article  CAS  Google Scholar 

  • National Water and Climate Center. (2016). Snow telemetry (SNOTEL) and snow course data and products (Water Resources Data System & Wyoming State Climate Office). University of Wyoming. https://www.wcc.nrcs.usda.gov/snow/. Accessed 24 April 2017

  • Nilsson, J., & Grennfelt, P. (1988). Critical loads for sulphur and nitrogen. Miljoerapport.

  • Pardo, L. H., Fenn, M. E., Goodale, C. L., Geiser, L. H., Driscoll, C. T., Allen, E. B., et al. (2011). Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States. Ecological Applications, 21(8), 3049–3082. https://doi.org/10.1890/10-2341.1

    Article  Google Scholar 

  • Peterson, D. L., Sullivan, T. J., Eilers, J. M., Brace, S., Horner, D., Savig, K., & Morse, D. (1998). Assessment of air quality and air pollutant impacts in national parks of the Rocky Mountains and northern Great Plains. National Park Service, Air Resources Division, Denver, CO, National Park Service Report D-657.

  • Reuss, J. O., Vertucci, F. A., Musselman, R. C., & Sommerfeld, R. A. (1995). Chemical fluxes and sensitivity to acidification of two high-elevation catchments in southern Wyoming. Journal of Hydrology, 173(1–4), 165–189. https://doi.org/10.1016/0022-1694(95)02701-P

    Article  CAS  Google Scholar 

  • Reuss, John O., & Johnson, D. W. (2012). Acid deposition and the acidification of soils and waters (Vol. 59). Springer Science & Business Media.

  • Rhoades, C., Elder, K., & Greene, E. (2010). The influence of an extensive dust event on snow chemistry in the Southern Rocky Mountains. Arctic, Antarctic, and Alpine Research, 42(1), 98–105. https://doi.org/10.1657/1938-4246-42.1.98

    Article  Google Scholar 

  • Sala, O. E., Chapin, F. S., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., et al. (2000). Global biodiversity scenarios for the year 2100. science, 287(5459), 1770–1774. https://doi.org/10.1126/science.287.5459.1770

  • Saros, J. E., Clow, D. W., Blett, T., & Wolfe, A. P. (2011). Critical Nitrogen deposition loads in high-elevation lakes of the Western us inferred from paleolimnological records. Water, Air, & Soil Pollution, 216(1), 193–202. https://doi.org/10.1007/s11270-010-0526-6

    Article  CAS  Google Scholar 

  • Saros, J. E., Michel, T. J., Interlandi, S. J., & Wolfe, A. P. (2005). Resource requirements of Asterionella formosa and Fragilaria crotonensis in oligotrophic alpine lakes: Implications for recent phytoplankton community reorganizations. Canadian Journal of Fisheries and Aquatic Sciences, 62(7), 1681–1689. https://doi.org/10.1139/f05-077

    Article  CAS  Google Scholar 

  • Schindler, D. W. (1977). Evolution of phosphorus limitation in lakes. Science, New Series, 195(4275), 260–262.

    CAS  Google Scholar 

  • Sequeira, R. (1982). Acid rain: An assessment based on acid-base considerations. Journal of the Air Pollution Control Association, 32(3), 241–245.

    Article  CAS  Google Scholar 

  • Slaymaker, H. O. (1974). Alpine hydrology. Arctic and Alpine Environments (pp. 134–155). Methuen.

    Google Scholar 

  • Smith, R. A., Alexander, R. B., & Schwarz, G. E. (2003). Natural background concentrations of nutrients in streams and rivers of the conterminous United States. Environmental Science & Technology, 37(14), 3039–1047. https://doi.org/10.1021/es020663b

    Article  CAS  Google Scholar 

  • Soltis, J., & Field, R. (2012). Pinedale Anticline Spatial Air Quality Assessment PASQUA. Wyoming Department of Environmental Quality. http://www.das.uwyo.edu/ozone/Projects/PASQUA/pasqua_reports/files/PASQUA%20Spatial%202011-12.pdf

  • Turk, J. T., & Campbell, D. H. (1997). Are aquatic resources of the Mt. Zirkel Wilderness Area in Colorado affected by acid deposition and what will emissions reductions at the local power plants do? US Department of the Interior, US Geological Survey.

  • Turk, J. T., Howard, E. T., Ingersoll, G. P., Tonnessen, K. A., Clow, D. W., Mast, M. A., Campbell, D. H., & Melack, J. M. (2001). Major-ion chemistry of the Rocky Mountain snowpack, USA. Atmospheric Environment, 35(2), 3957–3966. https://doi.org/10.1016/S1352-2310(01)00189-3

    Article  CAS  Google Scholar 

  • Turk, J. T., & Spahr, N. E. (1991). Rocky Mountains. In Acidic Deposition and Aquatic Ecosystems (pp. 471–501). Springer.

  • U.S. Department of Agriculture, Forest Service. (2002). Bridger-Teton National Forest Wind River Mountains Air Quality Monitoring Program Methods Manual. U.S. Department of Agriculture, Forest Service, Bridger-Teton National Forest.

  • Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., et al. (1997). Human alteration of the global nitrogen cycle: Sources and consequences. Ecological Applications, 7(3), 737–750. https://doi.org/10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2

    Article  Google Scholar 

  • Weathers, K. C., Lovett, G. M., Likens, G. E., & Lathrop, R. (2000). The effect of landscape features on deposition to Hunter Mountain, Catskill Mountains New York. Ecological Applications, 10(2), 528–540. https://doi.org/10.1890/1051-0761(2000)010[0528:TEOLFO]2.0.CO;2

    Article  Google Scholar 

  • Weathers, K. C., Simkin, S. M., Lovett, G. M., & Lindberg, S. E. (2006). Empirical modeling of atmospheric deposition in mountainous landscapes. Ecological Applications, 16(4), 1590–1607. https://doi.org/10.1890/1051-0761(2006)016[1590:EMOADI]2.0.CO;2

    Article  Google Scholar 

  • Williams, J. J., Lynch, J. A., Saros, J. E., & Labou, S. G. (2017). Critical loads of atmospheric N deposition for phytoplankton nutrient limitation shifts in western U.S. mountain lakes. Ecosphere, 8(10), e01955. https://doi.org/10.1002/ecs2.1955

  • Williams, M. W., & Tonnessen, K. A. (2000). Critical loads for inorganic nitrogen deposition in the Colorado Front Range, USA. Ecological Applications, 10(6), 1648–1665. https://doi.org/10.1890/1051-0761(2000)010[1648:CLFIND]2.0.CO;2

    Article  Google Scholar 

  • Winchester, J. W. (1968). Pollution pathways in the Great Lakes. Limnos, 2(1), 20–24.

    Google Scholar 

  • Wolfe, A. P., Baron, J. S., & Cornett, R. J. (2001). Anthropogenic nitrogen deposition induces rapid ecological changes in alpine lakes of the Colorado Front Range (USA). Journal of Paleolimnology, 25(1), 1–7. https://doi.org/10.1023/A:1008129509322

    Article  Google Scholar 

  • Wyoming Oil and Gas Commission. (2017). Sublette county production report. http://wogcc.state.wy.us/

  • Zhang, R., Thompson, T. M., Barna, M. G., Hand, J. L., McMurray, J. A., Bell, M. D., et al. (2018). Source regions contributing to excess reactive nitrogen deposition in the Greater Yellowstone Area (GYA) of the United States. Atmospheric Chemistry and Physics, 18(17), 12991–13011. https://doi.org/10.5194/acp-18-12991-2018

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Grace Stonecipher and Connor Raney for field assistance, with support from Ted Porwoll and the Pinedale Ranger District of the Bridger-Teton National Forest.

Funding

This study was conducted with funding from the Ucross High Plains Stewardship Initiative through the Western Research Fellowship, The Carpenter Sperry Fund, The Yale Institute for Biospheric Studies, The Wildlife & Wildlands Fund at Yale, and the Yale Stable Isotope Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Ganz.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 422 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganz, T.R., McMurray, J., Covey, K. et al. Chemical Effects of Snowmelt on an Alpine Lake in the Wind River Range, WY. Water Air Soil Pollut 232, 377 (2021). https://doi.org/10.1007/s11270-021-05284-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05284-z

Keywords

Navigation