Skip to main content
Log in

Kinetic study of methane hydrate formation with the use of a surface baffle

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The kinetics of methane gas hydrate formation was obtained by different dual and dual mixed impeller experiments with surface baffle at 42.5 bars pressure and 2 °C temperature. The outcomes indicated that induction time is lower in radial flow experiments compared to mixed flow experiments due to better gas liquid contact, uniform shear stress and good pumping capacity compared to mixed flow ones with values less 15 min. Radial flow experiments showed higher values in hydrate yield although the duration of hydrate formation in radial flow experiments is less compared to mixed flow ones confirming the above outcomes with values more than 5%. Radial flow impellers indicated higher values in rate of hydrate formation compared to mixed flow impellers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Merey S, Longinos SN (2019) The gas hydrate potential of the Eastern Mediterranean Sea. Bull Miner Res Exp 160:117–134. https://doi.org/10.19111/bulletinofmre.502275

    Article  Google Scholar 

  2. EIA (2019) Gas 2019 executive summary analysis and forecast to 2024. In U.S. Energy Information Administration, p. 3

  3. Merey S, Longinos SN (2018) The role of natural gas hydrates during natural gas transportation. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7(2):937–953

    Google Scholar 

  4. Sloan ED (1998) Clathrate hydrates of natural gases. Marcel Dekker, New York

    Google Scholar 

  5. Longinos SN, Longinou DD, Achinas S (2020) Natural gas hydrates: possible environmental issues. Contemporary environmental issues and challenges in era of climate change. Springer, Singapore

    Google Scholar 

  6. Sloan ED, Koh CA (2008) Clathrate hydrates of natural gases. CRC Press, New York

    Google Scholar 

  7. Longinos S (2019) Potential environmental challenges for gas hydrates. LAP Lambert Academic Publishing, Beau Basin

    Google Scholar 

  8. Longinos SN, Bulbul S, Parlaktuna M (2019) Potential effects of methane hydrates to the environment, PESXM-12th Pan-Hellenic Scientific Conference in Chemical Engineering, Athens, Greece

  9. Gudmundsson JS, Khodakar AA, Parlaktuna M (1994) Storing natural gas as frozen hydrate. SPE Prod Facil 90(01):69–73. https://doi.org/10.2118/24924-pa

    Article  Google Scholar 

  10. Sum AK, Burruss RC, Sloan ED (1997) Measurement of clathrate hydrates via Raman spectroscopy. J Phys Chem B 101:7371–7377. https://doi.org/10.1021/jp970768e

    Article  CAS  Google Scholar 

  11. Mao WL, Goncharov AF, Struzhkin VV, Guo Q, Hu J, Shu J, Hemley RJ, Somayazulu M, Zhao Y (2002) Hydrogen clusters in clathrate hydrate. Science 297:2247–2249. https://doi.org/10.1126/science.1075394

    Article  CAS  PubMed  Google Scholar 

  12. Koh CA, Sloan ED, Sum AK, Wu DT (2011) Fundamentals and applications of gas hydrates. Annu Rev Chem Biomol Eng 2:237–257. https://doi.org/10.1146/annurev-chembioeng-061010-114152

    Article  CAS  PubMed  Google Scholar 

  13. Englezos P, Lee JD (2005) Gas hydrates: a cleaner source of energy and opportunity for innovative technologies. Korean J Chem Eng 22(5):671–681. https://doi.org/10.1007/bf02705781

    Article  CAS  Google Scholar 

  14. Boswell R, Collett TS (2011) Current perspectives on gas hydrate resources. Energy Environ Sci 4(4):1206–1215. https://doi.org/10.1039/c0ee00203h

    Article  CAS  Google Scholar 

  15. Makogon YF (2010) Natural gas hydrates—a promising source of energy. J Nat Gas Sci Eng 2(1):49–59. https://doi.org/10.1016/j.jngse.2009.12.004

    Article  CAS  Google Scholar 

  16. Kanda H (2006) Economic study on natural gas transportation with natural gas hydrate (NGH) pellets. In: Proceeding of the 23rd world gas conference, Amsterdam

  17. Casco ME, Martínez-Escandell M, Gadea-Ramos E, Kaneko K, Silvestre-Albero J, Rodríguez-Reinoso F (2015) High-pressure methane storage in porous materials: are carbon materials in the pole position? Chem Mater 27:959–964. https://doi.org/10.1021/cm5042524

    Article  CAS  Google Scholar 

  18. Douieb S, Fradette L, Bertrand F, Haut B (2015) Impact of the fluid flow conditions on the formation rate of carbon dioxide hydrates in a semi-batch stirred tank reactor. AIChE J 61(12):4387–4401. https://doi.org/10.1002/aic.14952

    Article  CAS  Google Scholar 

  19. Longinos S (2020) The effect of experimental conditions on natural gas hydrate formation, PhD thesis, Middle East Technical University, Ankara, Turkey

  20. Longinos SN, Parlaktuna M (2020) The effect of experimental conditions on methane (95%)—propane (5%) hydrate formation. Energies 13:6710. https://doi.org/10.3390/en13246710

    Article  CAS  Google Scholar 

  21. Longinos SN, Parlaktuna M (2021) Kinetic analysis of methane-propane hydrate formation by the use of different impellers. ACS Omega 6:1636–1646

    Article  CAS  Google Scholar 

  22. Longinos SN, Parlaktuna M (2021) Kinetic analysis of dual impellers on methane hydrate formation. Int J Chem React Eng 19(2):155–165. https://doi.org/10.1515/ijcre-2020-0231

    Article  Google Scholar 

  23. Longinos SN, Parlaktuna M (2021) The effect of experimental conditions on methane hydrate formation by the use of single and dual impellers. React Kinet Mech Catal 132(2):771–794. https://doi.org/10.1007/s11144-021-01937-6

    Article  CAS  Google Scholar 

  24. Lee BI, Kesler MG (1975) Generalized Thermodynamic correlation based on three parameter corresponding states. AIChE J 21(3):510–527. https://doi.org/10.1002/aic.690210313

    Article  CAS  Google Scholar 

  25. Longinos SN, Parlaktuna M (2021) Kinetic analysis of CO2 hydrate formation by the use of different impellers. React Kinet Mech Catal. https://doi.org/10.1007/s11144-021-01968-z

    Article  Google Scholar 

  26. Longinos SN, Parlaktuna M (2021) Examination of behavior of lysine on methane (95%)—propane (5%) hydrate formation by the use of different impellers. J Pet Explor Prod Technol 11(4):1823–1831. https://doi.org/10.1007/s13202-021-01146-w

    Article  CAS  Google Scholar 

  27. Paul EL, Atiemo-Obeng VA, Kresta SM (2004) Handbook of industrial mixing science & practice. Wiley, Hoboken

    Google Scholar 

  28. Longinos SN, Parlaktuna M (2021) Are the amino acids inhibitors or promoters on methane (95%)—propane (5%) hydrate formation? React Kinet Mech Catal 132(2):795–809. https://doi.org/10.1007/s11144-021-01959-0

    Article  CAS  Google Scholar 

  29. Longinos SN, Parlaktuna M (2021) Examination of methane hydrate formation by the use of dual impeller combinations. React Kinet Mech Catal. https://doi.org/10.1007/s11144-021-02017-5

    Article  Google Scholar 

  30. Birch D, Ahmed N (1997) The influence of sparger design and location on gas dispersion in stirred vessels. Chem Eng Res Des 75(5):487–496. https://doi.org/10.1205/026387697523994

    Article  CAS  Google Scholar 

  31. Longinos SN, Parlaktuna M (2021) Kinetic study of amino acids on methane (95%)—propane (5%) hydrate formation. React Kinet Mech Catal. https://doi.org/10.1007/s11144-021-02023-7

    Article  Google Scholar 

  32. Longinos SN, Parlaktuna M (2021) Kinetic analysis of arginine, glycine and valine on methane (95%)—propane (5%) hydrate formation. React Kinet Mech Catal. https://doi.org/10.1007/s11144-021-02018-4

    Article  Google Scholar 

  33. Vysniauskas A, Bishnoi PR (1983) A kinetic study of methane hydrate formation. Chem Eng Sci 38(7):1061–1972. https://doi.org/10.1016/0009-2509(83)80027-x

    Article  CAS  Google Scholar 

  34. Seo SD, Hong SY, Sum AK, Lee KH, Lee JD (2019) Thermodynamic and kinetic analysis of gas hydrates by desalination of saturated salinity water. Chem Eng J 370:980–987. https://doi.org/10.1016/j.cej.2019.03.278

    Article  CAS  Google Scholar 

  35. Longinos SN, Parlaktuna M (2021) Examination of asparagine, aspartic acid and threonine in methane (95%)-propane (5%) gas hydrates as kinetic inhibitors. React Kinet Mech Catal. https://doi.org/10.1007/s11144-021-02052-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotirios Nik. Longinos.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2254 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longinos, S.N., Longinou, DD., Celebi, E. et al. Kinetic study of methane hydrate formation with the use of a surface baffle. Reac Kinet Mech Cat 134, 75–86 (2021). https://doi.org/10.1007/s11144-021-02058-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02058-w

Keywords

Navigation