Skip to main content
Log in

An error estimate for a finite-volume scheme for the Cahn–Hilliard equation with dynamic boundary conditions

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we consider a finite-volume approximation for the Cahn–Hilliard equation with dynamic boundary conditions. The convergence of the scheme is proved in Nabet (IMA J Numer Anal 36(4): 1898–1942, 2016), we prove here an error estimate for the fully-discrete scheme. We also give numerical simulations which validate the theoretical result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bessemoulin-Chatard, M., Chainais-Hillairet, C., Filbet, F.: On discrete functional inequalities for some finite volume schemes. IMA J. Numer. Anal. 35(3), 1125–1149 (2015). https://doi.org/10.1093/imanum/dru032

    Article  MathSciNet  MATH  Google Scholar 

  2. Cherfils, L., Petcu, M., Pierre, M.: A numerical analysis of the Cahn–Hilliard equation with dynamic boundary conditions. Discrete Contin. Dyn. Syst. 27(4), 1511–1533 (2010). https://doi.org/10.3934/dcds.2010.27.1511

    Article  MathSciNet  MATH  Google Scholar 

  3. Choo, S.M., Chung, S.K., Kim, K.I.: Conservative nonlinear difference scheme for the Cahn–Hilliard equation—II. Comput. Math. Appl. 39(1–2), 229–243 (2000). https://doi.org/10.1016/S0898-1221(99)00326-0

    Article  MathSciNet  MATH  Google Scholar 

  4. Droniou, J., Nataraj, N.: Improved \(L^2\) estimate for gradient schemes and super-convergence of the TPFA finite volume scheme. IMA J. Numer. Anal. 38(3), 1254–1293 (2017). https://doi.org/10.1093/imanum/drx028

    Article  MATH  Google Scholar 

  5. Du, Q., Nicolaides, R.A.: Numerical analysis of a continuum model of phase transition. SIAM J. Numer. Anal. 28(5), 1310–1322 (1991). https://doi.org/10.1137/0728069

    Article  MathSciNet  MATH  Google Scholar 

  6. Elliott, C.M.: The Cahn–Hilliard model for the kinetics of phase separation. In: Mathematical Models for Phase Change Problems (Óbidos, 1988), International Series of Numerical Mathematics, vol. 88, pp. 35–73. Birkhäuser, Basel (1989). https://doi.org/10.1007/978-3-0348-9148-6_3

  7. Elliott, C.M., French, D.A.: Numerical studies of the Cahn–Hilliard equation for phase separation. IMA J. Appl. Math. 38(2), 97–128 (1987). https://doi.org/10.1093/imamat/38.2.97

    Article  MathSciNet  MATH  Google Scholar 

  8. Elliott, C.M., French, D.A.: A nonconforming finite-element method for the two-dimensional Cahn–Hilliard equation. SIAM J. Numer. Anal. 26(4), 884–903 (1989). https://doi.org/10.1137/0726049

    Article  MathSciNet  MATH  Google Scholar 

  9. Elliott, C.M., French, D.A., Milner, F.A.: A second order splitting method for the Cahn–Hilliard equation. Numer. Math. 54(5), 575–590 (1989). https://doi.org/10.1007/BF01396363

    Article  MathSciNet  MATH  Google Scholar 

  10. Elliott, C.M., Larsson, S.: Error estimates with smooth and nonsmooth data for a finite element method for the Cahn–Hilliard equation. Math. Comput. 58, 603–630 (1992). https://doi.org/10.2307/2153205

    Article  MathSciNet  MATH  Google Scholar 

  11. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P., Lions, J. (eds.) Handbook of numerical analysis, vol. VII, Handbook of numerical analysis, VII, pp 715–1022. North-Holland, Amsterdam (2000)

  12. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. In: Symposia BB—Computational and Mathematical Models of Microstructural Evolution, MRS Proceedings, vol. 529 (1998). https://doi.org/10.1557/PROC-529-39

  13. Feng, X., Prohl, A.: Error analysis of a mixed finite element method for the Cahn–Hilliard equation. Numer. Math. 99(1), 47–84 (2004). https://doi.org/10.1007/s00211-004-0546-5

    Article  MathSciNet  MATH  Google Scholar 

  14. Feng, X., Prohl, A.: Numerical analysis of the Cahn–Hilliard equation and approximation of the Hele–Shaw problem. Interfaces Free Bound. 7(1), 1–28 (2005). https://doi.org/10.4171/IFB/111

    Article  MathSciNet  MATH  Google Scholar 

  15. Fischer, H., Maass, P., Dieterich, W.: Novel surface modes in spinodal decomposition. Phys. Rev. Lett. 79(5), 893–896 (1997). https://doi.org/10.1103/PhysRevLett.79.893

    Article  Google Scholar 

  16. Fischer, H., Maass, P., Dieterich, W.: Diverging time and length scales of spinodal decomposition modes in thin films. EPL (Europhysics Letters) 42(1), 49–54 (1998). https://doi.org/10.1209/epl/i1998-00550-y

    Article  Google Scholar 

  17. Furihata, D.: A stable and conservative finite difference scheme for the Cahn–Hilliard equation. Numer. Math. 87(4), 675–699 (2001). https://doi.org/10.1007/PL00005429

    Article  MathSciNet  MATH  Google Scholar 

  18. Jacqmin, D.: Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 402, 57–88 (2000). https://doi.org/10.1017/S0022112099006874

    Article  MathSciNet  MATH  Google Scholar 

  19. Kay, D., Styles, V., Welford, R.: Finite element approximation of a Cahn–Hilliard-Navier–Stokes system. Interfaces Free Bound. 10(1), 15–43 (2008). https://doi.org/10.4171/IFB/178

    Article  MathSciNet  Google Scholar 

  20. Kenzler, R., Eurich, F., Maass, P., Rinn, B., Schropp, J., Bohl, E., Dieterich, W.: Phase separation in confined geometries: solving the Cahn–Hilliard equation with generic boundary conditions. J. Comput. Phys. Commun. 133(2–3), 139–157 (2001). https://doi.org/10.1016/S0010-4655(00)00159-4

    Article  MathSciNet  MATH  Google Scholar 

  21. Kovács, B., Lubich, C.: Numerical analysis of parabolic problems with dynamic boundary conditions. IMA J. Numer. Anal. 37(1), 1–39 (2016). https://doi.org/10.1093/imanum/drw015

    Article  MathSciNet  MATH  Google Scholar 

  22. Nabet, F.: Convergence of a finite-volume scheme for the Cahn–Hilliard equation with dynamic boundary conditions. IMA J. Numer. Anal. 36(4), 1898–1942 (2016). https://doi.org/10.1093/imanum/drv057

    Article  MathSciNet  MATH  Google Scholar 

  23. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. Syst. 28(4), 1669–1691 (2010). https://doi.org/10.3934/dcds.2010.28.1669

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flore Nabet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Proof of proposition 7

Proof of proposition 7

For \(f \in L^2(\varOmega )\) and \(g \in L^2(\varGamma )\), we consider the following problem: find \(u:\varOmega \rightarrow {\mathbb {R}}\) such that \(\int _\varOmega u = \alpha \) and

$$\begin{aligned} -&\varDelta u = f \qquad \qquad&\text { in } \varOmega ; \end{aligned}$$
(59a)
$$\begin{aligned} -&\varDelta _{\scriptscriptstyle \varGamma }u_{\shortmid {\scriptscriptstyle \varGamma }}+ \partial _n u = g \quad&\text { on } \varGamma . \end{aligned}$$
(59b)

By integrating equation (59a) on all interior control volumes \({\scriptstyle {\mathcal {K}}}\in {\mathfrak {M}}\) and the boundary condition (59b) on all boundary control volumes \({\scriptstyle {\mathcal {L}}}\in \partial {\mathfrak {M}}\), the two-point flux approximation of problem (59) writes as follows. Find \(u_{{\scriptscriptstyle {\mathcal {T}}}}\in {\mathbb {R}}^{{\scriptscriptstyle {\mathcal {T}}}}\) such that \(\sum \limits _{{\scriptscriptstyle {\mathcal {K}}}\in {\mathfrak {M}}}m_{{{\scriptscriptstyle {\underline{{\mathcal {K}}}}}}}u_{{\scriptscriptstyle {\mathcal {K}}}}=\alpha \) and

$$\begin{aligned} \sum \limits _{{\scriptscriptstyle \sigma }\in {{\mathcal {E}}^{int}_{\scriptscriptstyle {\mathcal {K}}}}}m_{{\scriptscriptstyle \sigma }}\frac{u_{{\scriptscriptstyle {\mathcal {K}}}}-u_{{\scriptscriptstyle {\mathcal {L}}}}}{d_{{\scriptscriptstyle {\mathcal {K}}},{\scriptscriptstyle {\mathcal {L}}}}} + \sum \limits _{{\scriptscriptstyle \sigma }\in {{\mathcal {E}}^{ext}_{\scriptscriptstyle {\mathcal {K}}}}}m_{{\mathbf{e }}_{\scriptscriptstyle {{\scriptscriptstyle {\mathcal {L}}}}}}\frac{u_{{\scriptscriptstyle {\mathcal {K}}}}-u_{{\scriptscriptstyle {\mathcal {L}}}}}{d_{{\scriptscriptstyle {\mathcal {K}}},{\scriptscriptstyle {\mathcal {L}}}}}&= m_{{\scriptscriptstyle {\mathcal {K}}}}{\mathbb {P}}^m_{{\scriptscriptstyle {\mathcal {K}}}}f, \quad&\forall {\scriptstyle {\mathcal {K}}}\in {\mathfrak {M}}; \end{aligned}$$
(60a)
$$\begin{aligned} \sum \limits _{\scriptscriptstyle {{{\scriptscriptstyle \mathbf{v }}\in {\mathcal {V}}_{\scriptscriptstyle {\mathcal {L}}}}}}\frac{u_{{\scriptscriptstyle {\mathcal {L}}}}-u_{{\scriptscriptstyle \mathcal {L}'}}}{d_{{\scriptscriptstyle {\mathcal {L}}},{\scriptscriptstyle \mathcal {L}'}}} + m_{{\mathbf{e }}_{\scriptscriptstyle {{\scriptscriptstyle {\mathcal {L}}}}}}\frac{u_{{\scriptscriptstyle {\mathcal {L}}}}-u_{{\scriptscriptstyle {\mathcal {K}}}}}{d_{{\scriptscriptstyle {\mathcal {K}}},{\scriptscriptstyle {\mathcal {L}}}}}&= m_{{\scriptscriptstyle {\mathcal {L}}}}{\mathbb {P}}^m_{{\scriptscriptstyle {\mathcal {L}}}}g, \quad&\forall {\scriptstyle {\mathcal {L}}}\in \partial {\mathfrak {M}}. \end{aligned}$$
(60b)

We can prove that this problem admits a unique solution.

Because of the complex geometry of \(\varOmega \), it is possible to take into account some points \(x\in \varOmega ^c\) in the proof of the error estimate. To ensure that all the quantities used in the proof of Theorem 2 are well defined, we will use an extension in \(\varvec{{\mathbb {R}}}^2\) of the function u. Since \(u \in H^2(\varOmega )\), there exists an extension \({{\widetilde{u}}} \in H^2(\varvec{{\mathbb {R}}}^2)\) (that we fix in the sequel) such that

$$\begin{aligned} {{\widetilde{u}}}(x)=u(x), \;\; \forall x\in \varOmega \text { and } \left\| {{\widetilde{u}}} \right\| _{H^2(\varvec{{\mathbb {R}}}^2)} \le {C_{26}} \left\| u \right\| _{\scriptstyle {{H^2(\varOmega )}}}, \end{aligned}$$
(61)

with \(C_{{}26}>0\) depending only on \(\varOmega \).

Proposition 16

The tangential gradient of \(u:\varGamma \rightarrow {\mathbb {R}}\) to the vertex \({\mathbf{v }}={\scriptstyle {\mathcal {L}}}|{\scriptstyle {\mathcal {L}}}'\) satisfies

$$\begin{aligned} \left| \frac{u(x_{{\scriptscriptstyle \mathcal {L}'}}) - u(x_{{\scriptscriptstyle {\mathcal {L}}}})}{m_{\gamma _{{\scriptscriptstyle {\mathcal {L}}}{\scriptscriptstyle \mathcal {L}'}}}} - \nabla _{{\scriptscriptstyle \varGamma }}u({\mathbf{v }}) \cdot {\vec {\varvec{\tau }}}_{\varvec{{\scriptscriptstyle \mathbf{v }},{\scriptscriptstyle {\mathcal {L}}}}}({\mathbf{v }})\right| \le \int _{{\gamma _{{\scriptscriptstyle {\mathcal {L}}}{\scriptscriptstyle \mathcal {L}'}}}} \left| (u\circ \varphi )''(\varphi ^{-1}(x))\right| \text {d}\sigma (x), \end{aligned}$$

where \(\varphi \) is an arc-length parametrization of the curve \(\varGamma \) and \({\vec {\varvec{\tau }}}_{\varvec{{\scriptscriptstyle \mathbf{v }},{\scriptscriptstyle {\mathcal {L}}}}}({\mathbf{v }})\) is the unit tangent vector to \(\varGamma \) at point \({\mathbf{v }}={\scriptstyle {\mathcal {L}}}|{\scriptstyle {\mathcal {L}}}'\) going from \({\scriptstyle {\mathcal {L}}}\) to \({\scriptstyle {\mathcal {L}}}'\).

Proof

Let us consider the points \(t_{{\scriptscriptstyle {\mathcal {L}}}},t_{{\scriptscriptstyle \mathcal {L}'}},t_{{\scriptscriptstyle \mathbf{v }}}\in {\mathbb {R}}\) such that \(x_{{\scriptscriptstyle {\mathcal {L}}}}=\varphi (t_{{\scriptscriptstyle {\mathcal {L}}}})\), \(x_{{\scriptscriptstyle \mathcal {L}'}}=\varphi (t_{{\scriptscriptstyle \mathcal {L}'}})\) and \({\mathbf{v }}=\varphi (t_{{\scriptscriptstyle \mathbf{v }}})\), then the Taylor’s formulas give

$$\begin{aligned} u(x_{{\scriptscriptstyle \mathcal {L}'}}) - u(x_{{\scriptscriptstyle {\mathcal {L}}}}) =&(t_{{\scriptscriptstyle \mathcal {L}'}}-t_{{\scriptscriptstyle \mathbf{v }}}) (u\circ \varphi )' (t_{{\scriptscriptstyle \mathbf{v }}}) + \int _{t_{{\scriptscriptstyle \mathbf{v }}}}^{t_{{\scriptscriptstyle \mathcal {L}'}}} (t_{{\scriptscriptstyle \mathcal {L}'}}-s) (u\circ \varphi )'' (s) \text {d}s\\&- (t_{{\scriptscriptstyle {\mathcal {L}}}}-t_{{\scriptscriptstyle \mathbf{v }}}) (u\circ \varphi )' (t_{{\scriptscriptstyle \mathbf{v }}}) - \int _{t_{{\scriptscriptstyle \mathbf{v }}}}^{t_{{\scriptscriptstyle {\mathcal {L}}}}} (t_{{\scriptscriptstyle {\mathcal {L}}}}-s) (u\circ \varphi )'' (s) \text {d}s. \end{aligned}$$

Noting that \(|t_{{\scriptscriptstyle \mathcal {L}'}}-t_{{\scriptscriptstyle {\mathcal {L}}}}|=m_{\gamma _{{\scriptscriptstyle {\mathcal {L}}}{\scriptscriptstyle \mathcal {L}'}}}\) we conclude the proof. \(\square \)

Thanks to the Taylor’s formulas we can prove the following proposition.

Proposition 17

Let \({\scriptstyle {\mathcal {L}}}\in \partial {\mathfrak {M}}\) be a boundary control volume and \({\mathbf{v }}\) be a vertex of \({\scriptstyle {\mathcal {L}}}\), then the following equality holds

$$\begin{aligned} m_{\gamma _{{\scriptscriptstyle {\mathcal {L}}}{\mathbf{v }}}}- d_{{\scriptscriptstyle {\mathcal {L}}},{\mathbf{v }}}= {\mathcal {O}} \left( m_{{\scriptscriptstyle {\mathcal {L}}}}m_{\gamma _{{\scriptscriptstyle {\mathcal {L}}}{\mathbf{v }}}}\right) . \end{aligned}$$

Moreover for any point \(x\in \sigma ={\scriptstyle {\mathcal {L}}}\in {\mathcal {E}}_{ext}\), one has

$$\begin{aligned} {\varvec{\vec {\mathbf {n}}}}_{\varvec{\sigma {\scriptscriptstyle {\mathcal {K}}}}}(x) - \vec {\varvec{\mathbf {n}}}_{\varvec{{\scriptscriptstyle {\mathcal {K}}}{\scriptscriptstyle {\mathcal {L}}}}}= {\mathcal {O}} (m_{{\scriptscriptstyle {\mathcal {L}}}}), \end{aligned}$$

where \({\varvec{\vec {\mathbf {n}}}}_{\varvec{\sigma {\scriptscriptstyle {\mathcal {K}}}}}(x)\) is the unit normal vector to \(\sigma \) outward to \({\scriptstyle {\mathcal {K}}}\) at point x.

We are now in position to prove the main result of the appendix.

Theorem 2

Let us assume that the solution u of the continuous problem (59) belongs to \(H^2_{\scriptscriptstyle \varGamma }(\varOmega )\). Let us consider the solution \(u_{{\scriptscriptstyle {\mathcal {T}}}}\) to discrete problem (60). Then, there exists \(C_{{}27}>0\) independent of \(\text { size}({\mathcal {T}}\,\,)\) such that

$$\begin{aligned} \left| e_{{\scriptscriptstyle {\mathcal {T}}}} \right| _{\scriptstyle {{1,{\scriptscriptstyle {\mathcal {T}}}}}}^2 + \left| e_{{\scriptscriptstyle \partial {\mathfrak {M}}}} \right| _{\scriptstyle {{1,{\scriptscriptstyle \partial {\mathfrak {M}}}}}}^2 \le {C_{27}} \text { size}({\mathcal {T}}\,\,)^2 \left\| u \right\| _{\scriptstyle {{H^2_{\scriptscriptstyle \varGamma }(\varOmega )}}}^2, \end{aligned}$$
(62)

with \( e_{{\scriptscriptstyle {\mathcal {T}}}}={{\mathbb {P}}}^{{c}}_{{{\scriptscriptstyle {\mathcal {T}}}}}u - u_{{\scriptscriptstyle {\mathcal {T}}}}\).

We decompose the proof of Theorem 2 into two steps. As a first step, we prove (see Proposition 18) that the left-hand side of inequality (62) is bounded from above by the different consistency errors which intervene in the problem. In a second phase, we have to estimate these different consistency errors.

Proposition 18

Let us consider the solution u to problem (59) and the solution \(u_{{\scriptscriptstyle {\mathcal {T}}}}\) to discrete problem (60). Then the following estimate holds

$$\begin{aligned} \left| e_{{\scriptscriptstyle {\mathcal {T}}}} \right| _{\scriptstyle {{1,{\scriptscriptstyle {\mathcal {T}}}}}}^2 + \left| e_{{\scriptscriptstyle \partial {\mathfrak {M}}}} \right| _{\scriptstyle {{1,{\scriptscriptstyle \partial {\mathfrak {M}}}}}}^2\le & {} \sum \limits _{{\scriptscriptstyle \sigma }={\scriptscriptstyle {\mathcal {K}}}|{\scriptscriptstyle {\mathcal {L}}}\in {\mathcal {E}}_{int}}m_{{\scriptscriptstyle \sigma }}d_{{\scriptscriptstyle {\mathcal {K}}},{\scriptscriptstyle {\mathcal {L}}}}(R^{int}_{{\scriptscriptstyle \sigma },{\scriptscriptstyle {\mathcal {K}}}})^2 + \sum \limits _{{\scriptscriptstyle \sigma }={\scriptscriptstyle {\mathcal {L}}}\in {\mathcal {E}}_{ext}}m_{{\mathbf{e }}_{\scriptscriptstyle {{\scriptscriptstyle {\mathcal {L}}}}}}d_{{\scriptscriptstyle {\mathcal {K}}},{\scriptscriptstyle {\mathcal {L}}}}(R^{ext}_{{\scriptscriptstyle \sigma },{\scriptscriptstyle {\mathcal {K}}}})^2 \nonumber \\&+ \sum \limits _{\scriptscriptstyle {{{\scriptscriptstyle \mathbf{v }}={\scriptscriptstyle {\mathcal {L}}}|{\scriptscriptstyle \mathcal {L}'}\in {\mathcal {V}}}}}\frac{{R_{{\mathbf{v }},{\scriptscriptstyle {\mathcal {L}}}}}^2}{d_{{\scriptscriptstyle {\mathcal {L}}},{\scriptscriptstyle \mathcal {L}'}}} ; \end{aligned}$$
(63)

where,

$$\begin{aligned} R^{int}_{{\scriptscriptstyle \sigma },{\scriptscriptstyle {\mathcal {K}}}}&= \frac{1}{m_{{\scriptscriptstyle \sigma }}} \int _\sigma \nabla u(x) \cdot \vec {\varvec{\mathbf {n}}}_{\varvec{{\scriptscriptstyle {\mathcal {K}}}{\scriptscriptstyle {\mathcal {L}}}}}\text {d}x- \frac{u(x_{{\scriptscriptstyle {\mathcal {L}}}})-u(x_{{\scriptscriptstyle {\mathcal {K}}}})}{d_{{\scriptscriptstyle {\mathcal {K}}},{\scriptscriptstyle {\mathcal {L}}}}} , \quad&\forall \sigma ={\scriptstyle {\mathcal {K}}}|{\scriptstyle {\mathcal {L}}}\in {\mathcal {E}}_{\scriptscriptstyle {\mathcal {K}}}\cap {\mathcal {E}}_{int}; \\ R^{ext}_{{\scriptscriptstyle \sigma },{\scriptscriptstyle {\mathcal {K}}}}&= \frac{1}{m_{{\mathbf{e }}_{\scriptscriptstyle {{\scriptscriptstyle {\mathcal {L}}}}}}} \int _\sigma \nabla u(x) \cdot {\varvec{\vec {\mathbf {n}}}}_{\varvec{\sigma {\scriptscriptstyle {\mathcal {K}}}}}(x) \text {d}x- \frac{u(x_{{\scriptscriptstyle {\mathcal {L}}}})-u(x_{{\scriptscriptstyle {\mathcal {K}}}})}{d_{{\scriptscriptstyle {\mathcal {K}}},{\scriptscriptstyle {\mathcal {L}}}}} , \quad&\forall \sigma ={\scriptstyle {\mathcal {L}}}\in {\mathcal {E}}_{\scriptscriptstyle {\mathcal {K}}}\cap {\mathcal {E}}_{ext}; \\ {R_{{\mathbf{v }},{\scriptscriptstyle {\mathcal {L}}}}}&= d_{{\scriptscriptstyle {\mathcal {L}}},{\scriptscriptstyle \mathcal {L}'}}\nabla _{{\scriptscriptstyle \varGamma }}u_{\shortmid {\scriptscriptstyle \varGamma }}({\mathbf{v }}) {\vec {\varvec{\tau }}}_{\varvec{{\scriptscriptstyle \mathbf{v }},{\scriptscriptstyle {\mathcal {L}}}}}-u_{\shortmid {\scriptscriptstyle \varGamma }}(x_{{\scriptscriptstyle \mathcal {L}'}})-u_{\shortmid {\scriptscriptstyle \varGamma }}(x_{{\scriptscriptstyle {\mathcal {L}}}}) , \quad&\forall {\mathbf{v }}={\scriptstyle {\mathcal {L}}}|{\scriptstyle {\mathcal {L}}}' \in {\mathcal {V}}. \end{aligned}$$

Proof

Let \({\scriptstyle {\mathcal {K}}}\in {\mathfrak {M}}\), we integrate equation (59a) on \({\scriptstyle {\mathcal {K}}}\) and we subtract the resulting equality with equation (60a). Thanks to definitions of \(R^{int}_{{\scriptscriptstyle \sigma },{\scriptscriptstyle {\mathcal {K}}}}\) and \(R^{ext}_{{\scriptscriptstyle \sigma },{\scriptscriptstyle {\mathcal {K}}}}\) given in Proposition 18 imply

$$\begin{aligned}&\sum \limits _{{\scriptscriptstyle \sigma }={\scriptscriptstyle {\mathcal {K}}}|{\scriptscriptstyle {\mathcal {L}}}\in {\mathcal {E}}_{int}}\frac{m_{{\scriptscriptstyle \sigma }}}{d_{{\scriptscriptstyle {\mathcal {K}}},{\scriptscriptstyle {\mathcal {L}}}}} (e_{{\scriptscriptstyle {\mathcal {K}}}}-e_{{\scriptscriptstyle {\mathcal {L}}}}) + \sum \limits _{{\scriptscriptstyle \sigma }={\scriptscriptstyle {\mathcal {L}}}\in {\mathcal {E}}_{ext}}\frac{m_{{\mathbf{e }}_{\scriptscriptstyle {{\scriptscriptstyle {\mathcal {L}}}}}}}{d_{{\scriptscriptstyle {\mathcal {K}}},{\scriptscriptstyle {\mathcal {L}}}}} (e_{{\scriptscriptstyle {\mathcal {K}}}}-e_{{\scriptscriptstyle {\mathcal {L}}}}) \nonumber \\&\quad = \sum \limits _{{\scriptscriptstyle \sigma }\in {{\mathcal {E}}^{int}_{\scriptscriptstyle {\mathcal {K}}}}}m_{{\scriptscriptstyle \sigma }}R^{int}_{{\scriptscriptstyle \sigma },{\scriptscriptstyle {\mathcal {K}}}}+ \sum \limits _{{\scriptscriptstyle \sigma }\in {{\mathcal {E}}^{ext}_{\scriptscriptstyle {\mathcal {K}}}}}m_{{\mathbf{e }}_{\scriptscriptstyle {{\scriptscriptstyle {\mathcal {L}}}}}}R^{ext}_{{\scriptscriptstyle \sigma },{\scriptscriptstyle {\mathcal {K}}}}, \quad \forall {\scriptstyle {\mathcal {K}}}\in {\mathfrak {M}}. \end{aligned}$$
(64)

In the same way let \({\scriptstyle {\mathcal {L}}}\in \partial {\mathfrak {M}}\), we integrate equation (59b) on \({\scriptstyle {\mathcal {L}}}\) and we subtract the resulting equality with equation (60b). Then we obtain

$$\begin{aligned} \sum \limits _{\scriptscriptstyle {{{\scriptscriptstyle \mathbf{v }}\in {\mathcal {V}}_{\scriptscriptstyle {\mathcal {L}}}}}}\frac{e_{{\scriptscriptstyle {\mathcal {L}}}}-e_{{\scriptscriptstyle \mathcal {L}'}}}{d_{{\scriptscriptstyle {\mathcal {L}}},{\scriptscriptstyle \mathcal {L}'}}} + m_{{\mathbf{e }}_{\scriptscriptstyle {{\scriptscriptstyle {\mathcal {L}}}}}}\frac{e_{{\scriptscriptstyle {\mathcal {L}}}}-e_{{\scriptscriptstyle {\mathcal {K}}}}}{d_{{\scriptscriptstyle {\mathcal {K}}},{\scriptscriptstyle {\mathcal {L}}}}} = \sum \limits _{\scriptscriptstyle {{{\scriptscriptstyle \mathbf{v }}\in {\mathcal {V}}_{\scriptscriptstyle {\mathcal {L}}}}}}\frac{{R_{{\mathbf{v }},{\scriptscriptstyle {\mathcal {L}}}}}}{d_{{\scriptscriptstyle {\mathcal {L}}},{\scriptscriptstyle \mathcal {L}'}}} - m_{{\mathbf{e }}_{\scriptscriptstyle {{\scriptscriptstyle {\mathcal {L}}}}}}R^{ext}_{{\scriptscriptstyle \sigma },{\scriptscriptstyle {\mathcal {K}}}}, \quad \forall {\scriptstyle {\mathcal {L}}}\in \partial {\mathfrak {M}}. \end{aligned}$$
(65)

Now we multiply equation (64) by \(e_{{\scriptscriptstyle {\mathcal {K}}}}\) and summing up over \({\scriptstyle {\mathcal {K}}}\in {\mathfrak {M}}\) and we multiply equation (65) by \(e_{{\scriptscriptstyle {\mathcal {L}}}}\) and summing up over \({\scriptstyle {\mathcal {L}}}\in \partial {\mathfrak {M}}\). Then, summing the resulting equalities we have

$$\begin{aligned} \left| e_{{\scriptscriptstyle {\mathcal {T}}}} \right| _{\scriptstyle {{1,{\scriptscriptstyle {\mathcal {T}}}}}}^2 + \left| e_{{\scriptscriptstyle \partial {\mathfrak {M}}}} \right| _{\scriptstyle {{1,{\scriptscriptstyle \partial {\mathfrak {M}}}}}}^2 =&\sum \limits _{{\scriptscriptstyle \sigma }={\scriptscriptstyle {\mathcal {K}}}|{\scriptscriptstyle {\mathcal {L}}}\in {\mathcal {E}}_{int}}m_{{\scriptscriptstyle \sigma }}(e_{{\scriptscriptstyle {\mathcal {K}}}}-e_{{\scriptscriptstyle {\mathcal {L}}}}) R^{int}_{{\scriptscriptstyle \sigma },{\scriptscriptstyle {\mathcal {K}}}}+ \sum \limits _{{\scriptscriptstyle \sigma }={\scriptscriptstyle {\mathcal {L}}}\in {\mathcal {E}}_{ext}}m_{{\mathbf{e }}_{\scriptscriptstyle {{\scriptscriptstyle {\mathcal {L}}}}}}(e_{{\scriptscriptstyle {\mathcal {K}}}}-e_{{\scriptscriptstyle {\mathcal {L}}}}) R^{ext}_{{\scriptscriptstyle \sigma },{\scriptscriptstyle {\mathcal {K}}}}\\&+ \sum \limits _{\scriptscriptstyle {{{\scriptscriptstyle \mathbf{v }}={\scriptscriptstyle {\mathcal {L}}}|{\scriptscriptstyle \mathcal {L}'}\in {\mathcal {V}}}}}{R_{{\mathbf{v }},{\scriptscriptstyle {\mathcal {L}}}}}\frac{e_{{\scriptscriptstyle {\mathcal {L}}}}-e_{{\scriptscriptstyle \mathcal {L}'}}}{d_{{\scriptscriptstyle {\mathcal {L}}},{\scriptscriptstyle \mathcal {L}'}}} . \end{aligned}$$

Owing to the Cauchy–Schwarz and the Young inequalities, we obtain estimate (63). \(\square \)

With this proposition at hand we are now able to prove Theorem 2 by estimating all the terms of the right-hand side of (63).

Proof

First, let \(\sigma ={\scriptstyle {\mathcal {K}}}|{\scriptstyle {\mathcal {L}}}\in {\mathcal {E}}_{int}\) thanks to the Taylor’s formulas we have

$$\begin{aligned} R^{int}_{{\scriptscriptstyle \sigma },{\scriptscriptstyle {\mathcal {K}}}}=&\frac{1}{m_{{\scriptscriptstyle \sigma }}d_{{\scriptscriptstyle {\mathcal {K}}},{\scriptscriptstyle {\mathcal {L}}}}} \int _\sigma \int _0^1 (1-t) \left\langle D^2 u \left( (1-t)x+tx_{{\scriptscriptstyle {\mathcal {K}}}}\right) (x_{{\scriptscriptstyle {\mathcal {K}}}}-x) , (x_{{\scriptscriptstyle {\mathcal {K}}}}-x) \right\rangle \\&- \frac{1}{m_{{\scriptscriptstyle \sigma }}d_{{\scriptscriptstyle {\mathcal {K}}},{\scriptscriptstyle {\mathcal {L}}}}} \int _\sigma \int _0^1 (1-t) \left\langle D^2 u \left( (1-t)x+tx_{{\scriptscriptstyle {\mathcal {L}}}}\right) (x_{{\scriptscriptstyle {\mathcal {L}}}}-x) , (x_{{\scriptscriptstyle {\mathcal {L}}}}-x) \right\rangle . \end{aligned}$$

Owing to the Jensen inequality and the change of variables \((t,x)\in [0,1]\times \sigma \mapsto y =x+t(x_{{\scriptscriptstyle {\mathcal {K}}}}-x)\) (or \((t,x)\in [0,1]\times \sigma \mapsto y =x+t(x_{{\scriptscriptstyle {\mathcal {L}}}}-x)\) for the second term) and since for any \({\scriptstyle {\mathcal {K}}}\in {\mathfrak {M}}\), \(\text {diam}({\scriptstyle {\mathcal {K}}})\le \text {reg}({\mathcal {T}}\,\,)d(x_{{\scriptscriptstyle {\mathcal {K}}}},\sigma )\), for any \(\sigma \in {\mathcal {E}}_{\scriptscriptstyle {\mathcal {K}}}\) (see Definition 5) one has

$$\begin{aligned} (R^{int}_{{\scriptscriptstyle \sigma },{\scriptscriptstyle {\mathcal {K}}}})^2 \le C(\text {reg}({\mathcal {T}}\,\,)) \frac{\text { size}({\mathcal {T}}\,\,)^2}{m_{{\scriptscriptstyle {\mathcal {D}}}}} \int _{\scriptstyle {\mathcal {D}}}|D^2 u (y)|^2 \text {d}y. \end{aligned}$$

Noting that \(m_{{\scriptscriptstyle {\mathcal {D}}}}=\frac{m_{{\scriptscriptstyle \sigma }}d_{{\scriptscriptstyle {\mathcal {K}}},{\scriptscriptstyle {\mathcal {L}}}}}{2}\) we obtain

$$\begin{aligned} \sum \limits _{{\scriptscriptstyle \sigma }={\scriptscriptstyle {\mathcal {K}}}|{\scriptscriptstyle {\mathcal {L}}}\in {\mathcal {E}}_{int}}m_{{\scriptscriptstyle \sigma }}d_{{\scriptscriptstyle {\mathcal {K}}},{\scriptscriptstyle {\mathcal {L}}}}(R^{int}_{{\scriptscriptstyle \sigma },{\scriptscriptstyle {\mathcal {K}}}})^2 \le C(\text {reg}({\mathcal {T}}\,\,)) \text { size}({\mathcal {T}}\,\,)^2 \left\| D^2 u \right\| _{\scriptscriptstyle {{L^2(\varOmega )}}}^2. \end{aligned}$$
(66)

Secondly let \(\sigma ={\scriptstyle {\mathcal {L}}}\in \partial {\mathfrak {M}}\), thanks to definition (61) of \({{\widetilde{u}}}\) we have \(u(x_{{\scriptscriptstyle {\mathcal {L}}}})={{\widetilde{u}}}(x_{{\scriptscriptstyle {\mathcal {L}}}})\) and \(u(x_{{\scriptscriptstyle {\mathcal {K}}}})={{\widetilde{u}}}(x_{{\scriptscriptstyle {\mathcal {K}}}})\), thus since \(x_{{\scriptscriptstyle {\mathcal {L}}}}-x_{{\scriptscriptstyle {\mathcal {K}}}}=d(x_{{\scriptscriptstyle {\mathcal {K}}}},x_{{\scriptscriptstyle {\mathcal {L}}}})\vec {\varvec{\mathbf {n}}}_{\varvec{{\scriptscriptstyle {\mathcal {K}}}{\scriptscriptstyle {\mathcal {L}}}}}\), the definition of \(R^{ext}_{{\scriptscriptstyle \sigma },{\scriptscriptstyle {\mathcal {K}}}}\), the Jensen inequality and the Taylor’s formulas imply

$$\begin{aligned} m_{{\mathbf{e }}_{\scriptscriptstyle {{\scriptscriptstyle {\mathcal {L}}}}}}d_{{\scriptscriptstyle {\mathcal {K}}},{\scriptscriptstyle {\mathcal {L}}}}(R^{ext}_{{\scriptscriptstyle \sigma },{\scriptscriptstyle {\mathcal {K}}}})^2&\le 5d_{{\scriptscriptstyle {\mathcal {K}}},{\scriptscriptstyle {\mathcal {L}}}}\frac{(m_{{\scriptscriptstyle {\mathcal {L}}}}-m_{{\mathbf{e }}_{\scriptscriptstyle {{\scriptscriptstyle {\mathcal {L}}}}}})^2}{m_{{\mathbf{e }}_{\scriptscriptstyle {{\scriptscriptstyle {\mathcal {L}}}}}}m_{{\scriptscriptstyle {\mathcal {L}}}}} \int _{\scriptstyle {\mathcal {L}}}\left| \nabla {{\widetilde{u}}}(x)\right| ^2 \text {d}\sigma (x)\\&\quad + 5\frac{(d_{{\scriptscriptstyle {\mathcal {K}}},{\scriptscriptstyle {\mathcal {L}}}}- d(x_{{\scriptscriptstyle {\mathcal {K}}}},x_{{\scriptscriptstyle {\mathcal {L}}}}))^2}{d_{{\scriptscriptstyle {\mathcal {K}}},{\scriptscriptstyle {\mathcal {L}}}}} \frac{m_{{\mathbf{e }}_{\scriptscriptstyle {{\scriptscriptstyle {\mathcal {L}}}}}}}{m_{{\scriptscriptstyle {\mathcal {L}}}}} \int _{\scriptstyle {\mathcal {L}}}\left| \nabla {{\widetilde{u}}}(x)\right| ^2 \text {d}\sigma (x)\\&\quad + 5d_{{\scriptscriptstyle {\mathcal {K}}},{\scriptscriptstyle {\mathcal {L}}}}\frac{m_{{\mathbf{e }}_{\scriptscriptstyle {{\scriptscriptstyle {\mathcal {L}}}}}}}{m_{{\scriptscriptstyle {\mathcal {L}}}}} \int _{\scriptstyle {\mathcal {L}}}\left| \nabla {{\widetilde{u}}}(x)\right| ^2 |\vec {\varvec{\mathbf {n}}}_{\varvec{{\scriptscriptstyle {\mathcal {K}}}{\scriptscriptstyle {\mathcal {L}}}}}- {\varvec{\vec {\mathbf {n}}}}_{\varvec{\sigma {\scriptscriptstyle {\mathcal {K}}}}}(x)|^2 \text {d}\sigma (x)\\&\quad + \frac{5m_{{\mathbf{e }}_{\scriptscriptstyle {{\scriptscriptstyle {\mathcal {L}}}}}}}{d_{{\scriptscriptstyle {\mathcal {K}}},{\scriptscriptstyle {\mathcal {L}}}}m_{{\scriptscriptstyle \sigma }}} \int _\sigma \int _0^1 (1-t)^2 \left| D^2 {{\widetilde{u}}}\left( (1-t)x+tx_{{\scriptscriptstyle {\mathcal {K}}}}\right) \right| ^2 |x_{{\scriptscriptstyle {\mathcal {K}}}}-x|^4 \text {d}t\text {d}\sigma (x)\\&\quad + \frac{5m_{{\mathbf{e }}_{\scriptscriptstyle {{\scriptscriptstyle {\mathcal {L}}}}}}}{d_{{\scriptscriptstyle {\mathcal {K}}},{\scriptscriptstyle {\mathcal {L}}}}m_{{\scriptscriptstyle \sigma }}} \int _\sigma \int _0^1 (1-t)^2 \left| D^2 {{\widetilde{u}}}\left( (1-t)x+tx_{{\scriptscriptstyle {\mathcal {L}}}}\right) \right| ^2 |x_{{\scriptscriptstyle {\mathcal {L}}}}-x|^4 \text {d}t\text {d}\sigma (x). \end{aligned}$$

Thanks to Propositions 23 and 17 , there exists \({C_{{\scriptscriptstyle \varGamma }}}>0\) independent of \(\text { size}({\mathcal {T}}\,\,)\) such that

$$\begin{aligned} |d(x_{{\scriptscriptstyle {\mathcal {K}}}},x_{{\scriptscriptstyle {\mathcal {L}}}}) - d_{{\scriptscriptstyle {\mathcal {K}}},{\scriptscriptstyle {\mathcal {L}}}}| \le {C_{{\scriptscriptstyle \varGamma }}}m_{{\scriptscriptstyle {\mathcal {L}}}}m_{\gamma _{{\scriptscriptstyle {\mathcal {L}}}{\mathbf{v }}}}, \;\; |m_{{\mathbf{e }}_{\scriptscriptstyle {{\scriptscriptstyle {\mathcal {L}}}}}}-m_{{\scriptscriptstyle {\mathcal {L}}}}| \le {C_{{\scriptscriptstyle \varGamma }}}m_{{\scriptscriptstyle {\mathcal {L}}}}^3 \; \text { and }\; |\vec {\varvec{\mathbf {n}}}_{\varvec{{\scriptscriptstyle {\mathcal {K}}}{\scriptscriptstyle {\mathcal {L}}}}}- {\varvec{\vec {\mathbf {n}}}}_{\varvec{\sigma {\scriptscriptstyle {\mathcal {K}}}}}(x)| \le {C_{{\scriptscriptstyle \varGamma }}}m_{{\scriptscriptstyle {\mathcal {L}}}}. \end{aligned}$$

Thus, thanks to a change of variables in the last two integrals we have

$$\begin{aligned} m_{{\mathbf{e }}_{\scriptscriptstyle {{\scriptscriptstyle {\mathcal {L}}}}}}d_{{\scriptscriptstyle {\mathcal {K}}},{\scriptscriptstyle {\mathcal {L}}}}(R^{ext}_{{\scriptscriptstyle \sigma },{\scriptscriptstyle {\mathcal {K}}}})^2 \le&{C_{{\scriptscriptstyle \varGamma }}}(\text {reg}({\mathcal {T}}\,\,)) \text { size}({\mathcal {T}}\,\,)^3 \int _{\scriptstyle {\mathcal {L}}}\left| \nabla {{\widetilde{u}}}(x)\right| ^2 \text {d}\sigma (x)\\&+ C(\text {reg}({\mathcal {T}}\,\,)) \text { size}({\mathcal {T}}\,\,)^2 \left( \int _{{\scriptstyle {\mathcal {D}}}_{\scriptscriptstyle {\mathcal {L}}}} \left| D^2 {{\widetilde{u}}}(y)\right| ^2 \text {d}y+ \int _{{\scriptstyle {\mathcal {D}}}} \left| D^2 {{\widetilde{u}}}(y)\right| ^2 \text {d}y\right) , \end{aligned}$$

where \({\scriptstyle {\mathcal {D}}}_{{\scriptscriptstyle {\mathcal {L}}}}=\{ (1-t)x+tx_{{\scriptscriptstyle {\mathcal {L}}}}: t\in [0,1], x\in \sigma ={\scriptstyle {\mathcal {L}}}\}\). Then, owing to (61) we obtain

$$\begin{aligned} \sum \limits _{{\scriptscriptstyle \sigma }={\scriptscriptstyle {\mathcal {L}}}\in {\mathcal {E}}_{ext}}m_{{\mathbf{e }}_{\scriptscriptstyle {{\scriptscriptstyle {\mathcal {L}}}}}}d_{{\scriptscriptstyle {\mathcal {K}}},{\scriptscriptstyle {\mathcal {L}}}}(R^{ext}_{{\scriptscriptstyle \sigma },{\scriptscriptstyle {\mathcal {K}}}})^2 \le {C_{{\scriptscriptstyle \varGamma }}}(\text {reg}({\mathcal {T}}\,\,)) {C_{26}} \text { size}({\mathcal {T}}\,\,)^2 \left\| u \right\| _{\scriptscriptstyle {{H^1(\varOmega )}}}^2. \end{aligned}$$
(67)

Finally, using definition of \({R_{{\mathbf{v }},{\scriptscriptstyle {\mathcal {L}}}}}\) for any \({\mathbf{v }}={\scriptstyle {\mathcal {L}}}|{\scriptstyle {\mathcal {L}}}'\in {\mathcal {V}}\) we have

$$\begin{aligned} \frac{{R_{{\mathbf{v }},{\scriptscriptstyle {\mathcal {L}}}}}^2}{d_{{\scriptscriptstyle {\mathcal {L}}},{\scriptscriptstyle \mathcal {L}'}}}&\le 2d_{{\scriptscriptstyle {\mathcal {L}}},{\scriptscriptstyle \mathcal {L}'}}\left( \nabla _{{\scriptscriptstyle \varGamma }}u({\mathbf{v }}) {\vec {\varvec{\tau }}}_{\varvec{{\scriptscriptstyle \mathbf{v }},{\scriptscriptstyle {\mathcal {L}}}}}- \frac{u(x_{{\scriptscriptstyle \mathcal {L}'}})-u(x_{{\scriptscriptstyle {\mathcal {L}}}})}{m_{\gamma _{{\scriptscriptstyle {\mathcal {L}}}{\scriptscriptstyle \mathcal {L}'}}}} \right) ^2\\&\quad +2\frac{(u(x_{{\scriptscriptstyle \mathcal {L}'}})-u(x_{{\scriptscriptstyle {\mathcal {L}}}}))^2}{m_{\gamma _{{\scriptscriptstyle {\mathcal {L}}}{\scriptscriptstyle \mathcal {L}'}}}} \frac{(d_{{\scriptscriptstyle {\mathcal {L}}},{\scriptscriptstyle \mathcal {L}'}}-m_{\gamma _{{\scriptscriptstyle {\mathcal {L}}}{\scriptscriptstyle \mathcal {L}'}}})^2}{d_{{\scriptscriptstyle {\mathcal {L}}},{\scriptscriptstyle \mathcal {L}'}}m_{\gamma _{{\scriptscriptstyle {\mathcal {L}}}{\scriptscriptstyle \mathcal {L}'}}}}. \end{aligned}$$

Thanks to Proposition 16 and 17 , we obtain

$$\begin{aligned} \sum \limits _{\scriptscriptstyle {{{\scriptscriptstyle \mathbf{v }}={\scriptscriptstyle {\mathcal {L}}}|{\scriptscriptstyle \mathcal {L}'}\in {\mathcal {V}}}}}\frac{{R_{{\mathbf{v }},{\scriptscriptstyle {\mathcal {L}}}}}^2}{d_{{\scriptscriptstyle {\mathcal {L}}},{\scriptscriptstyle \mathcal {L}'}}} \le 2 {C_{{\scriptscriptstyle \varGamma }}}\text { size}({\mathcal {T}}\,\,)^2 \left\| u_{\shortmid {\scriptscriptstyle \varGamma }} \right\| _{\scriptstyle {{H^2(\varGamma )}}}^2. \end{aligned}$$
(68)

Gathering estimates (66), (67) and (68) the claim follows. \(\square \)

We have obtained an error estimate between the center-value projection of the exact solution \({{\mathbb {P}}}^{{c}}_{{{\scriptscriptstyle {\mathcal {T}}}}}u\) and the approximate solution \(u_{{\scriptscriptstyle {\mathcal {T}}}}\) for the Laplace problem with Ventcell boundary conditions for the \(H^1\)-seminorms. However in order to prove Proposition 7 we also need to prove an estimate between the exact solution u and the approximate solution \(u_{{\scriptscriptstyle {\mathcal {T}}}}\) for the \(L^2\)-norms. To conclude we adopt here the same reasoning as that given in [11, Theorem 10.1] for the Laplace problem with Neumann boundary conditions, apart from the fact that here the domain is not polygonal.

Let \(\beta _{{\scriptscriptstyle {\mathcal {T}}}}\in {\mathbb {R}}\) such that \(\sum \limits _{{\scriptscriptstyle {\mathcal {K}}}\in {\mathfrak {M}}}m_{{{\scriptscriptstyle {\underline{{\mathcal {K}}}}}}}{{\bar{u}}}(x_{{\scriptscriptstyle {\mathcal {K}}}}) = \alpha \) with \({{\bar{u}}}=u+\beta _{{\scriptscriptstyle {\mathcal {T}}}}\). Setting \({\bar{e}}_{{\scriptscriptstyle {\mathcal {K}}}}= {{\bar{u}}}(x_{{\scriptscriptstyle {\mathcal {K}}}}) - u_{{\scriptscriptstyle {\mathcal {K}}}}\) for any \({\scriptstyle {\mathcal {K}}}\in {\mathfrak {M}}\) and \({\bar{e}}_{{\scriptscriptstyle {\mathcal {L}}}}= {{\bar{u}}}(x_{{\scriptscriptstyle {\mathcal {L}}}}) - u_{{\scriptscriptstyle {\mathcal {L}}}}\) for any \({\scriptstyle {\mathcal {L}}}\in \partial {\mathfrak {M}}\), estimate (62) is also satisfied for \({\bar{e}}_{{\scriptscriptstyle {\mathcal {T}}}}\). However, thanks to its definition the error \({\bar{e}}_{{\scriptscriptstyle {\mathfrak {M}}}}\) has now zero mean-value on \({\underline{\varOmega }}\). Thus if \(\text { size}({\mathcal {T}}\,\,)\le \frac{1}{2 {C_{5}}}\), the discrete Poincaré inequality (7) gives

$$\begin{aligned} \left\| {\bar{e}}_{{\scriptscriptstyle {\mathfrak {M}}}} \right\| _{\scriptscriptstyle {{L^2(\varOmega )}}}^2 \le 4 {C_{4}^2} {C_{27}} \text { size}({\mathcal {T}}\,\,)^2 \left\| u \right\| _{\scriptstyle {{H^2_{\scriptscriptstyle \varGamma }(\varOmega )}}}^2, \end{aligned}$$

and thanks to the trace inequality (Lemma 4) we have

$$\begin{aligned} \left\| {\bar{e}}_{{\scriptscriptstyle \partial {\mathfrak {M}}}} \right\| _{\scriptscriptstyle {{L^2(\varGamma )}}}^2 \le (1+2{C_{4}})^2 {C_{8}}^2 {C_{27}} \text { size}({\mathcal {T}}\,\,)^2 \left\| u \right\| _{\scriptstyle {{H^2_{\scriptscriptstyle \varGamma }(\varOmega )}}}^2 . \end{aligned}$$

Thanks to the regularity of the function u, denoting by \(L_u\) the Lipschitz constant of u, one has

$$\begin{aligned} \left\| u-u_{{\scriptscriptstyle {\mathcal {T}}}} \right\| _{\scriptscriptstyle {{L^2(\varOmega )}}}^2 \le 3 |\varOmega | L_u^2 \text { size}({\mathcal {T}}\,\,)^2 + 3 |\varOmega | \beta _{{\scriptscriptstyle {\mathcal {T}}}}^2 + 3\left\| {\bar{e}}_{{\scriptscriptstyle {\mathfrak {M}}}} \right\| _{\scriptscriptstyle {{L^2(\varOmega )}}}^2. \end{aligned}$$

We recall that \(\int _\varOmega u = \sum \limits _{{\scriptscriptstyle {\mathcal {K}}}\in {\mathfrak {M}}}m_{{{\scriptscriptstyle {\underline{{\mathcal {K}}}}}}}{{\bar{u}}}(x_{{\scriptscriptstyle {\mathcal {K}}}}) = \alpha \) and \(\beta _{{\scriptscriptstyle {\mathcal {T}}}}= {{\bar{u}}}- u\), thus one has

$$\begin{aligned} |{\underline{\varOmega }}| \beta _{{\scriptscriptstyle {\mathcal {T}}}}= \alpha - \sum \limits _{{\scriptscriptstyle {\mathcal {K}}}\in {\mathfrak {M}}}m_{{{\scriptscriptstyle {\underline{{\mathcal {K}}}}}}}u(x_{{\scriptscriptstyle {\mathcal {K}}}}) \end{aligned}$$

and

$$\begin{aligned} \sum \limits _{{\scriptscriptstyle {\mathcal {K}}}\in {\mathfrak {M}}}m_{{{\scriptscriptstyle {\underline{{\mathcal {K}}}}}}}u(x_{{\scriptscriptstyle {\mathcal {K}}}}) = \sum \limits _{{\scriptscriptstyle {\mathcal {K}}}\in {\mathfrak {M}}}\left( m_{{{\scriptscriptstyle {\underline{{\mathcal {K}}}}}}}- m_{{\scriptscriptstyle {\mathcal {K}}}}\right) u(x_{{\scriptscriptstyle {\mathcal {K}}}}) + \sum \limits _{{\scriptscriptstyle {\mathcal {K}}}\in {\mathfrak {M}}}\int _{\scriptstyle {\mathcal {K}}}\left( u(x_{{\scriptscriptstyle {\mathcal {K}}}}) - u(x) \right) + \alpha . \end{aligned}$$

Thus thanks to the regularity of u, Proposition 1 and the mesh regularity (5) we can claim that \(| \beta _{{\scriptscriptstyle {\mathcal {T}}}}| \le C \text { size}({\mathcal {T}}\,\,)\) that concludes the proof.

The reasoning is exactly the same for the \(L^2(\varGamma )\)-norm that concludes the claim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabet, F. An error estimate for a finite-volume scheme for the Cahn–Hilliard equation with dynamic boundary conditions. Numer. Math. 149, 185–226 (2021). https://doi.org/10.1007/s00211-021-01230-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-021-01230-7

Mathematics Subject Classification

Navigation